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Abstract

The approximate, substitute model of the position and orientation fields over a finite, multi-coordinate domain is

built in a consistent way with the helicoidal modeling of the continuum, as proposed in Part I for a discrete application

of variational principles in computational elasticity. The set of the position and orientation, referred to as oriento-

position, is made dependent multiplicatively on the nodal values through relative rototranslations, and an implicit

interpolation formula is written by weighting the relative helices. The proposed interpolation scheme is frame-invariant

and path-independent, and the resulting weighted average oriento-position is obtained numerically. A consistent lin-

earization of the model field is carried out by developing explicit formulae for the derivatives, up to third-order, of

orthogonal tensors. The parent interpolation of the orientation field, which can be useful by itself in the context of

classical modeling, is also discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the finite-element approximation of a variational principle, the process of making a field of variables

dependent on a discrete number of variables, is referred to as interpolation among the nodal values. This

process yields a model of the field to substitute for the actual field over the element domain. Of course, the

model is expected to be consistent, i.e. respectful of the algebraic rules peculiar to the space to which the

variables pertain. When the variables belong to a special orthogonal manifold as the particle orientations or

the particle oriento-positions do (see Part I), then the non-commutative and multiplicative character of the
composition of rotations and rototranslations must be preserved in the model and borne in mind during its
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differentiation. In such a sense the interpolation of the orientation and oriento-position fields ought to be

multiplicative, i.e. based on the relative rotation, or relative rototranslation, of any particle from the nodal

orientations or oriento-positions, respectively.

In this paper we develop a multiplicative interpolation scheme capable of determining either the
orientation or the oriento-position of a frame over a multi-coordinate domain from any number of given

frames. The present formulation constitutes the consistent extension to multi-coordinate domains of a

multiplicative interpolation available for the case of frames defined over a one-coordinate domain. A

formula for interpolating sections on space-curved beams was first proposed by Borri and Bottasso

(1994a,b). A similar multiplicative interpolation for beam elements has been independently developed by

Crisfield and Jeleni�c (1999) and Jeleni�c and Crisfield (1999). More recently, Borri et al. (2000) rephrased

their interpolation with a description of the configuration that coincides, although with a different for-

malism, with the one adopted in this work. Such interpolations have been successfully exploited both in
beam elasticity problems and in rigid body dynamics (in the latter case, the coordinate is the time instead

of the section abscissa). The multiplicative interpolation we propose for solid domains is based on the

relative rotations, or relative rototranslations, from the nodal frames and so it is, by design, frame-

indifferent and invariant under superposed rigid-body motion. Since no motion of the nodal frames is

involved, the interpolation also guarantees path-independent solutions. This is in contrast with most of

the commonly adopted interpolations, that miss either the property of frame invariance or that of path-

independence (Crisfield and Jeleni�c, 1999; Jeleni�c and Crisfield, 1999). The proposed interpolation is

governed by an implicit nonlinear statement and relies on a numerical solution, which however proves
rather efficient.

While obtaining an interpolated orientation, or oriento-position, is by itself a quite simple problem to

solve, the linearization of the model field turns out to be a much harder problem. For the purposes of a

finite-element approximation, a threefold linearization is needed, involving spatial, virtual and incre-

mental variations. Such variations are unavoidably coupled in the case of a field of orthogonal tensors,

and entail mixed differentiations up to third-order, for a total of seven differentiations. The aim of

the linearization process of the multiplicative interpolation is to tie the seven independent differential

vectors or tensors characterizing such differentiations to the relevant nodal variation variables. The main
difficulty in this process is to establish the relations between differential rotation vectors and variations of

rotation vectors, or between differential helices and variations of helices for the case of rototransla-

tions. This is a quite difficult task, involving the derivatives of the exponential map and yielding the

associated differential maps. The interest in the computation of the derivatives of the exponential map is

alive nowadays, as evidenced by a number of recent works (Rosati, 1999; de Souza Neto, 2001; Ortiz

et al., 2001; Ritto-Corrêa and Camotim, 2002; see also Itskov, 2000, 2002; Itskov and Aksel, 2002). In

order to evaluate the needed derivatives, we introduce an original, recursive representation of ortho-

normal tensors by means of an infinite family of so-called nesting tensors, which make it easier to dif-
ferentiate up to any order the rotation and the rototranslation tensors in the context of vectorial

parameterizations.

The formulation developed in this paper for a consistent kinematical field is based on the helicoidal

modeling of the continuum as described in Part I. It can cope with arbitrarily large displacements and

rotations, and will be used in Part III to build finite elements capable of large curvatures and suitable for

geometrically nonlinear analyses. In Section 2, the multiplicative interpolation of the orientation field is

formulated and the relevant properties are discussed. Section 3 gives the extension to the helicoidal

interpolation of the oriento-position field. The linearization of the model field is accomplished in Section 4.
In Section 5 the computational algorithm is discussed, and the linearization formulae are numerically

verified. Finally, an example of interpolation is given in Section 6 and conclusions are drawn in Section 7.

The formulation of the differential maps is outlined in Appendix A (case of rotations) and Appendix B (case

of rototranslations).



T. Merlini, M. Morandini / International Journal of Solids and Structures 41 (2004) 5383–5409 5385
2. Weighted average orientation

Let us concentrate on some well-known underlying features that characterize positions and orientations.

Positions of points in space are measured by distances, while orientations of frames are measured by rel-
ative rotations, and such geometrical measures are deeply different in character. Distances are elements of

the linear Euclidean vector space, and so they commute and sum up additively, while rotations belong to

the group of special orthogonal transformations, hence they do not commute and compose multiplicatively.

Now, consider the problem of interpolating a position or an orientation among given data. As far as the

position is concerned, the simplest interpolation is achieved by looking for a weighted average position

based on weighted distances, i.e. by solving the equation
XN
J¼1

WJ ðx� xJ Þ ¼ 0: ð1Þ
Eq. (1) gives the position vector x of the point with null weighted average of distances from N given points

with position vectors xJ and weights WJ ðJ ¼ 1; 2; . . . ;NÞ. By exploiting the same concept, an interpolated
orientation can be sought as a weighted average orientation based on appropriate weighted ‘distances’, such

to measure the relative orientations in a way consistent with the special orthogonal manifold to which

rotations belong. By recalling the exponential map of the rotation and the inverse logarithmic map (namely

U ¼ expðu�Þ and u� ¼ logU, see Part I), the most natural choice for such ‘distance’ appears to be the

logarithm of the relative rotation from a given frame. Therefore, the following equation is written,
XN
J¼1

WJ logðaaTJ Þ ¼ 0; ð2Þ
forcing to zero the weighted average of the logarithms of the rotation tensors from N given frames, with

orientation tensors aJ and weights WJ , to a frame with orientation tensor a. Although not strictly necessary,

it is understood throughout the paper that the frames are made of orthonormal triads, and that brings the
orientation tensors to be actually rotation tensors.

Eqs. (1) and (2) state the appropriate interpolation schemes for either kinds of fields. We can interpret

the position x as the sum of a known position xJ plus the distance x� xJ , and we can do so N times. The

linear Eq. (1) weighs such distances and gives the interpolated position in closed form, x ¼
P

WJxJ for

normalized weights. This is an additive interpolation scheme. Analogously, the orientation a is interpreted

N times as a known orientation aJ multiplied by a relative rotation ~UJ ¼ aaTJ , see Fig. 1 (where, for clarity,
Fig. 1. Example of multiplicative interpolation of the orientation.
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the frames are kept separate in space). Eq. (2) weighs the logarithms ~uJ� ¼ log ~UJ , hence the relative

rotation vectors ~uJ ¼ ax log ~UJ ; however, Eq. (2) is an implicit nonlinear equation and cannot give in

general the interpolated orientation a in closed form, but needs a numerical solution (see Section 5.1). This

is a multiplicative interpolation scheme.
The interpolation scheme of Eq. (2) is objective. In order to ascertain the frame indifference, consider the

reference frame back-rotated by a rotation bT, so that the orientations of the given frames are represented

by orientation tensors âJ ¼ aJb. Then, application of Eq. (2) yields a weighted average orientation â ¼ ab,

representing the same interpolated frame with respect to the new reference frame. This ensures the frame

indifference of the interpolation scheme. Manifestly, the interpolation scheme is also invariant for super-

posed rigid motion; e.g. for new, rigidly rotated orientation tensors âJ ¼ baJ , the weighted average ori-

entation becomes â ¼ ba. This is easily checked using the identities W expðu�ÞWT ¼ expðWu�WTÞ ¼
expððWuÞ�Þ and logðWUWTÞ ¼ WðlogUÞWT, valid for any two orthonormal tensors U and W.

In spite of the analogy of the definitions of weighted average position and weighted average orientation,

the multiplicative character of the composition of rotations entails an important consequence about the

significance of averaging rotation tensors. After assigning arbitrary displacements to the given points, or

arbitrary rotations to the given frames, it is seen that the displacement of the interpolated position coincides

with the weighted average of the displacements of the given points, while the rotation of the interpolated

orientation does not correspond in general to the weighted average of the rotations of the given frames. Let

us see this in detail. By moving xJ to new positions x0J ¼ xJ þ uJ and interpolating by Eq. (1) x0 ¼
P

WJx
0
J ,

one computes a displacement u ¼ x0 � x coincident with the weighted average displacement, u ¼
P

WJuJ .
On the contrary, by rotating aJ to new orientations a0J ¼ UJaJ and using Eq. (2) to interpolate a0 fromP

WJ logða0aTJUT
J Þ ¼ 0, one obtains a rotation U ¼ a0aT that in general does not correspond to any kind of

‘weighted average rotation’ of the rotations UJ . It can be argued that in the Euclidean linear space,

averaging the displacements of different points, is consistent with averaging the point positions; on the

special orthogonal manifold, instead, averaging the rotations of different frames, is in general inconsistent

with averaging the frame orientations. However, in few particular cases the rotation of the weighted

average orientation coincides with the weighted average of the rotations from the given orientations, as

obtained by solving the equation
P

WJ logðUUT
J Þ ¼ 0. It is easy to see that this is true (i) when the ori-

entations of the given frames coincide to each other (case of rotations from a common orientation,

a � a1 � a2 � � � � � aN ), (ii) when all the given frames undergo a unique rotation (rigid rotation,

U � U1 � U2 � � � � � UN ) and (iii) when the rotations are coaxial (a direction n exists such that

Un � U1n � U2n � � � � � UNn � n), hence they commute and sum up (for instance, the planar case).

These considerations are quite important and permeate the whole interpolation philosophy we follow in

a nonlinear finite element context. The local orientation is interpolated among the nodal orientations in the

same way in either the initial configuration or a deformed configuration, and the angular curvature (which

characterizes the gradient of the orientation, ka ¼ aaxðaTa=�), see Part I) is computed from the nodal
orientations in the same way in either configurations. No interpolation is attempted among the nodal

rotations nor an angular strain is directly computed from them. The local rotation is recovered by com-

paring the local orientations in the deformed and initial configurations, and the angular strain is computed

as the appropriate change of angular curvature (Part I, xa ¼ k0a �Uka). Since the local orientation and

curvature are computed independently from the past history of the nodal orientations, our objective

interpolation scheme is also intrinsically path-independent. As the frame invariance is achieved by averaging

relative rotations, the path independence is closely related with the guess of interpolating orientations

instead of their evolution, i.e. rotations.
This philosophy departs from the standard interpolation schemes adopted in finite elasticity. It is cus-

tomary, when using a vectorial parameterization of the rotation, to rely on additive interpolations of either

the total rotation vector or an incremental rotation vector. Consider, with the present notation and

assuming orthonormal orientation tensors, the following interpolation formula,
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XN
J¼1

WJ ðlog a� log aJ Þ ¼ 0: ð3Þ
By introducing the inverse exponential map y� ¼ log a, Eq. (3) yields the rotation vector defining the

orientation a in closed form, y ¼
P

WJyJ . This interpolation does not depend on the evolution of the given

frames, so it is path-independent. However, it is not frame-indifferent in three-dimensional space. In fact, by

applying Eq. (3) to the orientations âJ ¼ aJb, measured from a reference frame back-rotated by bT, the

consistent orientation â ¼ ab cannot in general be achieved, simply because the rotation vector of the
composition of two subsequent rotations is not the sum of the respective rotation vectors. This kind of

interpolation is often cast in terms of rotations from the initial configuration (total rotations), see e.g.

Cardona and Geradin (1988), Ibrahimbegovi�c et al. (1995), Ritto-Corrêa and Camotim (2002); in these

formulations, it coincides with Eq. (3) if the initial orientations are identical. Alternatively, the incremental

rotation (from a converged solution) or the iterative rotation (during the solution process) is interpolated

with the additive formula yo ¼
P

WJyoJ , and used to update the total rotation (refer to Jeleni�c and Crisfield,

1999, and to works quoted therein). The invariance of some incremental/iterative interpolations under

superposed rigid-body motion has been recently proved by Ibrahimbegovi�c and Taylor (2002) with a de-
tailed analysis. However, it is common notion that additive interpolations of incremental/iterative rotations

lead to path-dependent solutions.

The non-invariance and/or path-dependence of the additive interpolation schemes is discussed deeply by

Crisfield and Jeleni�c (1999) and Jeleni�c and Crisfield (1999). They conclude that none of the commonly used

interpolation formulae can ensure frame invariance and path independence at the same time. In their

work––which however deals only with beam elements––they propose to interpolate the relative rotation

vectors from an appropriate reference frame, properly tied to the nodal orientations. By this way, they are

able to release the interpolation from the evolution of the nodal orientations, so attaining at the same time
frame-invariance and path-independence. This interpolation scheme is in agreement with the one-dimen-

sional helicoidal interpolation already published by Borri and Bottasso (1994a,b) in the modeling of space-

curved beams. The scheme we propose in the present work can be seen as the extension to multi-coordinate

domains of such kind of multiplicative interpolation, together with a systematic linearization that was

lacking in that works.
3. Weighted average oriento-position

Oriento-positions in space are measured by rototranslations, and rototranslations are orthonormal dual

tensors belonging to a special orthogonal group (see Part I). We denote with H ¼ expðg�Þ and g� ¼ logH
the exponential and logarithmic maps of a rototranslation H , of helix g. A dual tensor

A ¼ Xa ¼ ðI þ ex�Þa represents an oriento-position, which is assumed orthonormal so that AAT ¼ I .
Owing to the close analogy with orientation and rotation tensors, and thanks to the powerful formalism of

the algebra of dual numbers (Angeles, 1998), the extension of the concept of weighted average orientation

to the case of the oriento-position is straightforward. In this case, the ‘distance’ on which the weighted

average oriento-position is based is the logarithm of the relative rototranslation from a given applied frame,

i.e. the relative helix. The interpolation is therefore referred to as helicoidal interpolation and is governed by

the equation
XN
J¼1

WJ logðAAT
J Þ ¼ 0: ð4Þ



Fig. 2. Example of multiplicative interpolation of the oriento-position.
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Eq. (4) forces to zero the weighted average of the logarithms of the rototranslation tensors from N given

applied frames, with oriento-position tensors AJ and weights WJ , to an applied frame with oriento-position
tensor A.

As for the case of the orientation, we observe that the interpolation scheme is multiplicative: for N times,

the oriento-position A is a known oriento-position AJ multiplied by a relative rototranslation ~HJ ¼ AAT
J ,

and Eq. (4) is weighing the logarithms ~gJ� ¼ log ~HJ , hence the relative helices ~gJ ¼ ax log ~HJ . The scheme

is depicted in Fig. 2, where now the location in space of the frames is pertinent. In the example of Fig. 2, we

can also compare the present interpolation, originating from the helicoidal modeling, with the classical

independent interpolations of the position and orientation fields (dash sketch); in the latter case, the same

orientation (note that the primal part of dual tensor A is just the orientation a) is located in a position
independently interpolated among the given positions. In the helicoidal interpolation, of course, the implicit

nonlinear Eq. (4) must be solved numerically for the oriento-position A (see Section 5.2).

By the same arguments as for Eq. (2), we infer that the interpolation scheme of Eq. (4) is objective.

Moreover, it is seen that, after assigning arbitrary rototranslations to the given applied frames, the roto-

translation of the interpolated oriento-position does not correspond in general to the weighted average of

the rototranslations of the given applied frames. This confirms that averaging the rototranslations of dif-

ferent applied frames is in general inconsistent with averaging the frame oriento-positions. However, the

rototranslation of the weighted average oriento-position coincides with the weighted average of the roto-
translations in three particular cases: (i) obviously, when the rototranslations depart from a common

oriento-position; (ii) when the rototranslation is unique for all the given applied frames, that is when the

motion is rigid; (iii) when rototranslations are coaxial, and the interpolation becomes controlled by a scalar

equation involving dual magnitudes of helices that commute and sum up. Again, by keeping to the

interpolation of oriento-positions instead of rototranslations, an intrinsically path-independent scheme is

achieved.
4. Linearization of the model field

In view of the formulation of finite elements, it is important to be able to differentiate the model of the

kinematical field of orthonormal tensors set up by the interpolation scheme, with respect to either the

spatial, virtual and incremental variations. In the differentiation process, we extend the formulation up to
the relationship among the local variation variables and the nodal variation variables. In fact, we can, and
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shall avoid choosing the actually free variables representing the nodal orthonormal tensors, so we do not

reach linear expressions with respect to the free-variable variations. In a sense, this differentiation process is

the parameterization-free core of the linearization; nevertheless, we shortly refer to it as the (threefold)

linearization of the interpolation. Indeed, it should be pointed out here that the choice of a parameteri-
zation is still unavoidable for the differentiation of the relative rotation (or rototranslation) field inside the

interpolation domain, and for this purpose we will resort to the natural parameterization based on the

exponential map.

The linearization of the proposed interpolation of an orthonormal field is identical for the cases of

orientations and oriento-positions. In the present context of the helicoidal modeling, we just refer to the

case of the oriento-position field. The reader interested in linearizing the interpolation of the orientation

field can follow the present derivation and substitute orientations for oriento-positions, rotations for ro-

totranslations, and so on, and drop any reference to dual quantities. For the present case, the linearization
can be outlined as follows. The spatial, virtual and incremental variations of the oriento-position field are

coupled because of the inherent nonlinearity in the representation of rototranslations (see Part I), and entail

mixed differentiations up to third-order for a total of seven differentiations. Seven independent differential

dual vectors or tensors characterize such differentiations. Such local variation variables are related to the

appropriate nodal variation variables by the linearization of the multiplicative model of the kinematical

field, through appropriate relative variation variables, so that the couplings among the variation variables

are consistently preserved.

In a finite element context, we are concerned with interpolation within a continuum. We describe the
domain of interest by means of a number n of material coordinates, say niði ¼ 1; 2; . . . ; nÞ; typically, n ¼ 3

for a three-dimensional solid, n ¼ 2 on a surface (shells) and n ¼ 1 along a line (beams). The weights WJ are

N scalar functions of the domain coordinates, normalized so that
P

WJ ¼ 1 everywhere; they are known

functions, and so are their derivatives WJ ;i with respect to the domain coordinates. The notation

ð Þ=� � ð Þ;i � gi means the gradient, so WJ=� are the gradients of functions WJ . The oriento-position field is

defined as a dual tensor function of the abstract placement identified by a set of values of the coordinates

within the domain, symbolically A ¼ Aðn1; n2; . . . ; nnÞ. On the other hand, AJ are the nodal oriento-posi-

tions at N abstract placements identified by some coordinates niJ , and are assumed as known. In this paper,
we implicitly refer to the case of three-dimensional solids ðn ¼ 3Þ. However, accounting for a different

number of coordinates is immediate.
4.1. Local and nodal variation variables

The quantities to be considered in the interpolation are the oriento-position A itself, its virtual, incre-

mental and mixed virtual-incremental variations dA, oA, odA, the finite gradient A=� and the relevant

virtual, incremental and mixed virtual-incremental variations dA=�, oA=�, odA=�. Since the spatial, virtual
and incremental variations are independent of each other, the mixed changes involve differentiations up to

the third-order. A study of the differentiation of rototranslation tensors (see Part I and Merlini, 2002) yields

appropriate expressions for such variations, which we group in the following scheme, where we enclose the

orthogonality condition for the sake of completeness:
ATA ¼ I

ATdA ¼ ðATadÞx
AToA ¼ ðATaoÞx

ATodA ¼ ðATaodÞxþ
1

2
ððATaoÞxðATadÞxþ ðATadÞxðATaoÞxÞ

ð5Þ



5390 T. Merlini, M. Morandini / International Journal of Solids and Structures 41 (2004) 5383–5409
and
ATA=� ¼ ðATkÞx

ATdA=� ¼ ðATkdÞx �
1

2
ððATadÞxATkÞx þ ðATadÞxðATkÞx

AToA=� ¼ ðATkoÞx �
1

2
ððATaoÞxATkÞx þ ðATaoÞxðATkÞx

ATodA=� ¼ ðATkodÞx �
1

2
ððATaodÞxATkÞx þ ðATaodÞxðATkÞx

� 1

2
ððATaoÞxATkd þ ðATadÞxATkoÞx þ ðATaoÞxðATkdÞx þ ðATadÞxðATkoÞx:

ð6Þ
Seven differential dual tensors characterize the seven variations: the virtual, incremental and mixed virtual-

incremental oriento-position vectors ad, ao, aod, the finite curvature k, and the virtual, incremental and

mixed virtual-incremental curvatures kd, ko, kod. Such characteristic variation variables are defined by Eqs.

(5) and (6), and are representative of the axial vectors of second-order dual tensors like ATdA; . . ., and of

the axial tensors of third-order dual tensors like ATA=�; . . . They will be referred to as the local variation

variables and constitute the outcome of the linearization process of the interpolation.

The interpolation is performed among the nodal oriento-positions AJ . Furthermore, the relevant virtual,

incremental and mixed virtual-incremental variations are considered. According to similar expressions
AT
J dAJ ¼ ðAT

J adJ Þx
AT

J oAJ ¼ ðAT
J aoJ Þx

AT
J odAJ ¼ ðAT

J aodJ Þxþ
1

2
ððAT

J aoJ ÞxðA
T
J adJ Þxþ ðA

T
J adJ ÞxðA

T
J aoJ ÞxÞ;

ð7Þ
the virtual, incremental and mixed virtual-incremental nodal oriento-position vectors adJ , aoJ , aodJ char-

acterize such variations. They are referred to as the nodal variation variables and constitute the input

arguments of the interpolation linearization, to be regarded as independent variables.

It is worth discussing the presence of the mixed virtual-incremental variation variables aod and kod at a

generic place, and aodJ at the nodes. At the nodes, where the actually free variables of a problem are defined,
the mixed variation variables aodJ can, and will be solved for the simple variation variables adJ and aoJ , using
the differential maps giving the variation variables from the variations of the actually free variables. At a

generic internal place, where the variables are not actually free variables, but are nonlinearly dependent on

the nodal free variables, the mixed variation variables aod and kod cannot be solved in a similar way for the

relevant simple variation variables ad, ao, or kd, ko. Instead, they must be interpolated independently and

undergo independent dependencies on aodJ .

4.2. Relative variation variables

Let us focus now on the relative rototranslations ~HJ ¼ AAT
J from the known nodal oriento-positions to

the interpolated local oriento-position, and on the relative helices defined as the dual axial vectors of the

relevant skew-symmetric logarithmic maps, ~gJ ¼ ax log ~H J . The spatial, virtual and incremental variations

of the relative rototranslations obey by themselves expressions analogous to Eqs. (5) and (6), that actually

define seven characteristic differential dual tensors, referred to as the relative variation variables. They are

the virtual, incremental and mixed virtual-incremental relative helices ~gdJ , ~goJ , ~godJ , the finite relative strain
~xJ , and the virtual, incremental and mixed virtual-incremental relative strains ~xdJ , ~xoJ , ~xodJ . Here, we leave

out the relevant defining formulae; they can be obtained from Eqs. (5) and (6), simply replacing A with ~H J ,
a with ~gJ , and k with ~xJ everywhere.
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The interpolated oriento-position can be understood as the unique result of N different compositions of

rototranslations, namely the oriento-position of each node J followed by the relevant relative rototrans-

lation, A ¼ ~HJAJ . By taking the variations of the oriento-position field, the variations of either the relative

rototranslations and the nodal oriento-positions are involved. By working on the equations defining the
respective variation variables, it is possible to obtain, after complicated manipulations (Merlini, 2002), a

relationship between the local variation variables, the relative variation variables and the nodal variation

variables,
ad ¼ ~gdJ þ ~HJadJ

ao ¼ ~goJ þ ~HJaoJ

aod ¼ ~godJ þ ~HJaodJ �
1

2
ðð ~HJaoJ Þx~gdJ þ ð ~H JadJ Þx~goJ Þ

ð8Þ
and
k ¼ ~xJ

kd ¼ ~xdJ �
1

2
ð ~H JadJ Þx~xJ

ko ¼ ~xoJ �
1

2
ð ~H JaoJ Þx~xJ

kod ¼ ~xodJ �
1

2
ð ~HJaodJ Þx~xJ �

1

2
ðð ~HJaoJ Þx~xdJ þ ð ~HJadJ Þx~xoJ Þ

þ 1

4
ðð ~HJaoJ Þxð~gdJ þ ~HJadJ Þxþ ð ~H JadJ Þxð~goJ þ ~HJaoJ ÞxÞ~xJ

� ð ~H JaoJ � ~gdJ þ ~H JadJ � ~goJ þ ~HJaoJ � ~HJadJ ÞS � ~xJ :

ð9Þ
By means of Eqs. (8) and (9), the outcome of the linearization, i.e. the local variation variables, are made

dependent on the relative variation variables. In the linearization process, we shall exploit the inverse

relationship, obtained by solving Eqs. (8) and (9) for the relative variation variables.
4.3. Linearization equations

The linearization of the interpolation is accomplished by rewriting the statement of weighted average

oriento-position, Eq. (4), in terms of the axial vectors of the logarithms of the relative rototranslations, i.e.

the relative helices, and by differentiating it in either the spatial, virtual and incremental sense. We obtain

the following equations, where the original statement is included for completeness:
XN
J¼1

WJ~gJ ¼ 0;

XN
J¼1

WJd~gJ ¼ 0;

XN
J¼1

WJo~gJ ¼ 0;

XN
J¼1

WJod~gJ ¼ 0

ð10Þ
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and
 XN
J¼1
ð~gJ � WJ=� þ WJ~gJ=�Þ ¼ 0;

XN
J¼1
ðd~gJ � WJ=� þ WJd~gJ=�Þ ¼ 0;

XN
J¼1
ðo~gJ � WJ=� þ WJo~gJ=�Þ ¼ 0;

XN
J¼1
ðod~gJ � WJ=� þ WJod~gJ=�Þ ¼ 0:

ð11Þ
Apart from the first equation––that gives the interpolated oriento-position, hence the relative helices ~gJ
themselves––Eqs. (10) and (11) collect seven algebraic equations having as unknowns all the plain and

mixed variations up to the third-order of the relative helices. They are the virtual, incremental and mixed

virtual-incremental variations d~gJ , o~gJ , od~gJ , the gradients ~gJ=�, and the virtual, incremental and mixed

virtual-incremental gradients d~gJ=�, o~gJ=�, od~gJ=�. In order to state the problem in terms of local variation

variables, which are related to the relative variation variables by Eqs. (8) and (9), we still need to link the
relative variation variables to the variations of the relative helices.

Given the exponential map of the rototranslation and its dual vector argument, the helix, the mapping of

the variations of the helix itself onto the differential helices that characterize the differentiations of a ro-

totranslation tensor is referred to as the associated differential mapping. For the present purposes, we are

interested in mixed differential maps up to the third level, hence we get involved with mixed differentiations

up to third-order of the rototranslation tensor, that is by no means an easy task. Resorting to an original

recursive representation of orthonormal tensors by means of an infinite family of nesting tensors was

decisive in yielding manageable expressions for the needed differential maps. The formulation is extensively
discussed in Merlini (2003) and is outlined in two Appendices. The spirit of the theory is developed in

Appendix A, which deals with the differential maps of the rotation and can be useful by itself to people

interested in interpolating just the orientation tensors. The main results for the differential maps of the

rototranslation are recovered in Appendix B, where meaningful explicit expressions are also discussed.

Application of Eqs. (B.14) and (B.15) to the present case yields the following direct relations between the

relative variation variables and the variations of the relative helices,
~gdJ ¼ ~KJd~gJ

~goJ ¼ ~KJo~gJ

~godJ ¼ ~KJod~gJ þ ~K
12 3

III J : d~gJ � o~gJ

ð12Þ
and
~xJ ¼ ~KJ~gJ=�

~xdJ ¼ ~KJd~gJ=� þ ~K
12 3

III J : d~gJ � ~gJ=�

~xoJ ¼ ~KJo~gJ=� þ ~K
12 3

III J : o~gJ � ~gJ=�

~xodJ ¼ ~KJod~gJ=� þ ~K
12 3

III J : ðod~gJ � ~gJ=� þ o~gJ � d~gJ=� þ d~gJ � o~gJ=�Þ

þ ~K
12 3 4

IV J

 
� 1

2
ðI x ~KJ ÞT132 ~K12 3

III J

�
þ ~KJ � ~KT

J
~KJ

�S12 3 4
!

..

.
d~gJ � o~gJ � ~gJ=�;

ð13Þ
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and the inverse relations, that represent the solution of Eqs. (12) and (13) for the variations of the relative

helices. Expressions for the mapping tensors, in either the direct form, ~KJ , ~K
12 3

III J ,
~K
12 3 4

IV J , and the inverse

form, ~K�1J , ~K
�11 2
III J , ~K

�12 3 4
IV J , are given in Appendix B, see Eqs. (B.16) and (B.17). Refer to Appendix A for an

explanation of the notation used to denote particular symmetries of higher-order tensors.
4.4. Interpolation formulae

Within Eqs. (10) and (11), we now substitute the inverse of Eqs. (12) and (13) for the variations of the

relative helices; then, we substitute the inverse of Eqs. (8) and (9) for the relative variation variables. Seven

algebraic equations are obtained with the local variation variables as unknowns. They are solved in cascade
(refer to Merlini and Morandini (2003) for any details) and yield the virtual, incremental and mixed virtual-

incremental oriento-position dual vectors
ad ¼
XN
J¼1

VJ � adJ ;

ao ¼
XN
K¼1

VK � aoK ;

aod ¼
XN
J¼1

VJ � aodJ þ
XN
J¼1

XN
K¼1

VJK : adJ � aoK ;

ð14Þ
the finite curvature
k ¼ �K��1II

XN
J¼1

WJ ;i~gJ � gi ð15Þ
and the virtual, incremental and mixed virtual-incremental curvatures
kd ¼
XN
J¼1

WJ : adJ � I ;

ko ¼
XN
K¼1

WK : aoK � I ;

kod ¼
XN
J¼1

WJ : aodJ � I þ
XN
J¼1

XN
K¼1

WJK
..
.
adJ � aoK � I :

ð16Þ
The curvature k is obtained in closed form. The other local variation variables are obtainable by

interpolation formulae linear with the nodal variation variables, i.e. the virtual, incremental and mixed
virtual-incremental nodal oriento-position dual vectors adJ , aoJ , aodJ . The coefficient dual tensors of the

second, third and fourth-order in Eqs. (14) and (16) are given in closed form as
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VJ ¼ K��1II ðWJ
~K�1J

~HJ Þ;
VJK ¼ K��1II ððK

�12 3
III VJ ÞT132VK � ðWJ

~K�T132J=
~HJ ÞT132VK � ððWK

~K�T132K=
~HKÞT132VJÞT132

þ dJKðWJ
~K
�12 3
III J

~HJ ÞT132 ~HKÞ
¼VT132

KJ ;

WJ ¼ K��1II ð�ðK
�
II=i � K

�12 3
III kiÞVJ þ ðWJ ;i

~K�1J � WJ
~K�J=kiÞ ~HJ Þ � gi;

WJK ¼ K��1II ððK
�12 3
III VJ � WJ

~K�J=
T132 ~H J ÞT132WKi þ ððK�12 3III VK � WK

~K�K=
T132 ~HKÞT132WJiÞT132

� ðK�II=i � K
�12 3
III kiÞVJK þ ððK�12 3III=i þ K

�12 3 4
Q kiÞVJ ÞT132VK

� ððWJ ;i
~K�J=

T132 þ WJð~K�1234R J þ ~K
�12 3 4
Q J ÞkiÞ ~HJ ÞT132VK

� ðððWK;i
~K�K=

T132 þ WKð~K�1234RK þ ~K
�12 3 4
QK ÞkiÞ ~HKÞT132VJ ÞT132

þ dJKððWJ ;i
~K
�12 3
III J þ WJ ð~K�12 34L J þ ~K

�12 3 4
Q J ÞkiÞ ~H JÞT132 ~HKÞ � gi

¼WT1324
KJ :

ð17Þ
In the expressions of Eqs. (15) and (17), we exploit for convenience of notation some dual tensors built

with the differential maps of the relative rototranslations. They are the summations
K�II ¼
XN
J¼1

WJ
~K�1J ; K�II= ¼

XN
J¼1

WJ ;i
~K�1J � gi;

K
�12 3
III ¼

XN
J¼1

WJ
~K
�12 3
III J ; K

�12 3
III= ¼

XN
J¼1

WJ ;i
~K
�12 3
III J � gi;

K
�12 3 4
Q ¼

XN
J¼1

WJ
~K
�12 3 4
Q J ;

ð18Þ
the fourth-order dual tensors
~K
�12 34
L J ¼ ð~K�12 3III J I x þ 1

2
~K�1J � ðI � I þ ðI � IÞT1342ÞÞS12 34;

~K
�1234
R J ¼ ð~K�12 3III J I x þ 1

2
~K�1J � ðI � I þ ðI � IÞT1324ÞÞS1234;

~K
�12 3 4
Q J ¼ ~K

�12 3 4
IV J � ð3~K�12 3III J

~KJ
~K
�12 3
III J � 1

2
~K�1J I x ~KJ

~K
�12 3
III J þ ~K�1J � IÞS12 3 4;

ð19Þ
and the inverse form ~K�J= of the derivatives of the tangent map from Eqs. (B.19)2,
~KJ= ¼ ~K
12 3

III J þ
1

2
ðI x ~KJ ÞT132 ~KJ ;

~K�J= ¼ ~K
�12 3
III J �

1

2
~K�1J I x;

ð20Þ

which are tied by the reciprocity relations

~K�J= ¼ ~K�1J ðð~KJ=
~K�1J Þ

T132 ~K�1J Þ
T132

;

~KJ= ¼ ~KJ ðð~K�J= ~KJ ÞT132 ~KJ ÞT132:
It is noted that the derivative-related tensors in Eqs. (15), (17) and (18), come in the form of dyadic

compositions with the contravariant base vectors gi. The covariant component tensors are actually first
computed using the known derivatives WJ ;i with respect to the domain coordinates ni. In order to recover
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the curvature tensor and the coefficient tensors for the differential curvatures, we need to know the base

vectors, which in turn rely on the dual part of the curvature. The covariant base vectors will be computed

from the curvature component vectors as gi ¼ dualðXTkiÞ, see Part I. This enables building the Jacobian

tensor G ¼ gj � ij, with ij the unit vectors of the absolute orthonormal base, and extracting the contra-
variant base vectors as the component vectors of the inverse-transpose tensor G�T ¼ gj � ij.
5. Computational aspects

5.1. Computation of the weighted average orientation

The interpolation problem giving the weighted average orientation can be solved numerically by a sort of

Newton–Raphson procedure on the vectorial equation
XN
J¼1

WJ ax logðaaTJ Þ ¼ 0; ð21Þ
obtained extracting the axial vector of Eq. (2). In terms of relative rotations ~UJ ¼ aaTJ and relative rotation

vectors ~uJ ¼ ax log ~UJ , Eq. (21) can be stated as f ð~uJ Þ ¼ 0, and in incremental form f þ of ¼ 0. Let us now

introduce the incremental orientation vector yo such that yo� ¼ oaaT ¼ o ~UJ
~UT

J ¼ ~uoJ�, and exploit the

differential maps of the relative rotations, ~uoJ ¼ ~CJ o~uJ (see Appendix A); it follows that yo ¼ ~CJo~uJ .

Therefore, the vector function f and its increment of can be written
f ¼
XN
J¼1

WJ ~uJ ;

of ¼
XN
J¼1

WJ
~C�1J yo:

ð22Þ
An iterative solution process can be started having vector f from Eq. (22)1 as residual and using tensorP
WJ

~C�1J from Eq. (22)2 as Jacobian. At each iteration, a linear 3 · 3 equation set is solved for the incre-

mental orientation vector yo, which is used to multiplicatively update the unknown orientation tensor,

a expðyo�Þa.
A good starting point for this procedure is recommended, and an efficient way to achieve it is proposed

here. Starting from the orientation aJ with the highest associated weight, we iterate on the fictitious problem
f þ Iyo ¼ 0. This roughly means to regard

P
WJ ~uJ as a small rotation vector to bring to zero like an error.

This approaching procedure just requires the evaluation of the residual Eq. (22)1 and can cheaply lower the

error under 10�3 rad. From such a good starting point, a quadratic rate of convergence of the next pro-

cedure of the Newton–Raphson kind is practically ensured.
5.2. Computation of the weighted average oriento-position

The problem of the weighted average oriento-position, Eq. (4), could be solved numerically by the same

procedure discussed above, exploiting the rules of dual algebra. However, the linear dependency of the

oriento-position tensor on the position vector suggests a computationally more efficient procedure made of

two steps. Extracting the axial vector of Eq. (4) and introducing the relative rototranslations ~HJ ¼ AAT
J

and the relative helices ~gJ ¼ ax log ~HJ , and exploiting Eqs. (16), (18) and (21)2 from Part I, we arrive at the
explicit form
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XN
J¼1

WJ ð~uJ þ e ~C�1J ðx� ~UJxJ ÞÞ ¼ 0: ð23Þ
The primal part is just Eq. (21) and is first solved for the weighted average orientation a. Then, the dual part

reduces to a linear problem with position vector x as unknown. The interpolated oriento-position dual

tensor is finally recovered as A ¼ ðI þ ex�Þa.

5.3. Numerical validation of the interpolation formulae

The quite huge expressions of the coefficient dual tensors in Eqs. (17) have been tested numerically. Let

us consider two distinct configurations, a given configuration and another, very close, perturbed configu-
ration, and let us refer to the change of configuration as the updating process. Assigned values of the nodal

oriento-positions define the given configuration, and an assigned set of the nodal variation variables define

the updating of the nodal oriento-positions to the perturbed configuration. In both configurations, the

numerical solution of Eqs. (4) and (15) yield the interpolated oriento-positions and curvatures, that we

assume as ‘exact’. In the given configuration, using Eqs. (14) and (16) with the assigned nodal variation

variables, a set of local variation variables defining the local updating to the perturbed configuration is

obtained. This local updating yields predicted oriento-positions and curvatures, which must converge to the

exact values as the perturbation magnitude diminishes.
In order to test the interpolation formulae, which account for two independent variations, we need a

consistent updating mechanism for oriento-positions and curvatures, which shall involve the variation

variables characterizing two independent variations, say o and d. Consider a double variation that brings an

oriento-position A in A0 ¼ Aþ dAþ oðAþ dAÞ ¼ Aþ oAþ dðAþ oAÞ ¼ Aþ dAþ oAþ odA. By apply-

ings Eqs. (5), it follows that A0 ¼ ðI þ adxþ aoxþ aodxþ 1
2
ðaoxadxþ adxaoxÞÞA, and since the differential

vectors ad, ao and aod are infinitesimal, we can assume A0 ffi ðI þ adxþ aoxþ aodxÞA. Now, an infinitesimal

rototranslation must transform A in A0, and this condition is satisfied by substituting expððad þ ao þ aodÞxÞ
for the transforming tensor. Similar but more involved considerations (see Merlini and Morandini, 2003)
yield the transformation rule for the curvature tensor from k to k0. Thus, the updating formulae for oriento-

positions and curvatures are finally proposed in the form
A0 ¼ expðâodxÞA;
k0 ¼ dexp ðâodxÞk̂od þ ðI þ 1

2
dexpðâodxÞðâodxþ ðad � aoÞS þ ao � ad � IÞÞk;

ð24Þ
where
âod ¼ ad þ ao þ aod;

k̂od ¼ kd þ ko þ kod:
In the validation tests, Eq. (24)1 is also used for updating the nodal oriento-positions.
Tests are performed on four different orders of domains, described respectively by 1, 2, 3 and 4 coor-

dinates. By using multilinear weight functions, this means elements with 2, 4, 8 and 16 nodes. The nodal

oriento-positions are generated by random rototranslations of real part magnitude up to more than 2 rad,

and are given random perturbations confined within a band of randomly generated width. The compu-

tations are repeated 100 times, providing a total amount of 400 different tests at disposal. The interpolation

weights and their derivatives are computed each time at random internal placements.

The errors of the predicted oriento-position and curvature with respect to the exact values are measured

respectively as the real part magnitude of the relative helix, and the maximum absolute difference between
the scalar components of the curvatures. A quadratic rate of convergence of the interpolation formulae

with decreasing the magnitude of the nodal perturbation is observed (Fig. 3), and this is a reliable evidence
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of the soundness of the linearization. However, in comparison with the fairly cheap procedure yielding the

interpolated oriento-position, the linearization is computationally rather expensive. The whole process is

consuming a mean time of 4, 10, 34 and 141 ms per test to interpolate among 2, 4, 8 and 16 nodes

respectively, on a Pentium III computer at 933 MHz.
6. Example

In this section, we discuss the description of a solid hexahedron from the position and orientation of

eight corner frames. The example is taken from a finite-element simulation to be discussed in Part III, and

represents the deformed configuration of an element that was initially prismatic, of size 2 · 1 · 1 and aligned

along the absolute axis x1. The absolute reference frame, the deformed configuration, and a further con-

figuration after a rigid motion, are depicted in Fig. 4 (the initial configuration is not relevant in this

example). The corner data are listed in Table 1.
The model field is defined on a rectangular domain described by three material coordinate lines

ni ¼ ½�1;þ1�, with n1 parallel to edge 1–2, n2 parallel to edge 2–3 and n3 parallel to edge 1–5. Standard

three-linear weight functions WJ ¼ 1
8
ð1þ n1n1J Þð1þ n2n2JÞð1þ n3n3J Þ are used for the interpolation. Since the

element edges lie on coordinate lines and the element faces lie on coordinate surfaces, the interpolation on

the boundary using such weight functions is local to the boundary itself. This ensures C0 continuity of the

oriento-position field across adjacent elements. The helicoidal interpolation is exploited in this example to

render the geometry of the element: each face and each edge are modeled with a number of facets and

segments, and this mesh is interpolated from the corner nodes. So, faces and edges are curved surfaces and
lines, respectively.

The oriento-position A of an internal frame located at n ¼ ð0:2; 0:0;�0:3Þ is interpolated from the eight

corner frames, and the dual component vectors ki of the curvature along the coordinate lines are computed

from Eq. (15). The position x, the orientation tensor a, the base vectors gi ¼ dual ðXTkiÞ and the angular

curvatures kai ¼ primal ðXTkiÞ are recovered and listed in Table 2. The interpolated frame and an ‘ele-

mentary’ volume of initial size 0.4 · 0.4 · 0.4 are plotted in Fig. 4. It is easy to envisage the difference be-

tween this interpolation based on the helicoidal modeling and common interpolations based on classical

uncoupled modeling. Even if the orientation would have been interpolated multiplicatively according to Eq.
(2), the corner-node element built with standard isoparametric functions would have exhibited straight



Fig. 4. Helicoidal interpolation of a deformed hexahedron.

Table 1

Positions and orientations of corner frames

x a1 a2 a3

1 3.22989991 )0.381852659 )0.907936713 0.172741053

4.39071471 0.906706495 )0.404230328 )0.120337749
0.17134187 0.179086233 0.110674145 0.977588541

2 2.32012122 )0.391731346 )0.897655212 0.201895204

3.99131867 0.895364344 )0.422436080 )0.140962585
0.29246236 0.211823618 0.125550303 0.969209924

3 2.59481673 )0.352321916 )0.873185522 0.336773383

3.88768434 0.914252067 )0.398036382 )0.075565848
1.32324204 0.200031063 0.281272257 0.938548609

4 3.44536342 )0.372619388 )0.882783513 0.286091002

4.29237833 0.909984998 )0.408019712 )0.073805264
1.07487356 0.181884839 0.232837247 0.955355809

5 1.71236201 )0.875276697 )0.444489976 0.190576402

5.96865365 0.464544629 )0.882307493 0.075708488

0.50092547 0.134495324 0.154797119 0.978748619

6 1.24918588 )0.869169880 )0.420473610 0.260279972

5.08759160 0.450635907 )0.890210064 0.066733211

0.68019308 0.203644296 0.175293999 0.963224281

7 1.52285903 )0.837379182 )0.448146618 0.312986766

5.24897003 0.518383601 )0.832712741 0.194596847

1.69955113 0.173420149 0.325198555 0.929608171

8 1.93261569 )0.859252855 )0.446798858 0.249109034

6.07401308 0.494095535 )0.851004650 0.177934507

1.40529471 0.132492011 0.275974395 0.951989496
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Table 2

Position, orientation, base vectors and angular curvatures at n ¼ ð0:2; 0:0;�0:3Þ from the helicoidal interpolation, and orientation and

angular curvatures from the additive interpolation (marked with an overbar)

x a1 a2 a3 �a1 �a2 �a3

2.46921 )0.57550633 )0.77053058 0.27399833 )0.57423280 )0.77182423 0.27302757

4.67371 0.79706182 )0.60346359 )0.02289440 0.79899357 )0.60104978 )0.01866651
0.86690 0.18298885 0.20521774 0.96145762 0.17851043 0.20742835 0.96182509

g1 g2 g3 ka1 ka2 ka3 ka1 ka2 ka3

)0.38285 0.13329 )0.55683 0.00388594 )0.04595530 )0.02656145 0.00402349 )0.04615493 )0.02974501
)0.29906 )0.01282 0.77240 0.02604382 0.05505335 0.00758286 0.02622432 0.05413409 0.00781498

0.09943 0.48938 0.18416 )5.47895E)6 )0.00695709 0.33785617 )0.00023360 )0.00734615 0.33720886

Table 3

Relative rotation error and angular strain in the rigid motion by using the additive interpolation

�u �xa1 �xa2 �xa3

)3.6849E)04 1.2349E)04 6.1001E)04 )6.7284E)04
)9.5707E)03 )2.9616E)04 )4.1573E)04 8.8087E)03
1.4695E)02 2.6097E)06 1.4312E)03 )7.6800E)03
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edges, and the position and the shape assumed by the elementary volume would have been quite different. It
can be guessed that model fields based on the helicoidal interpolation constitute a sound basis to build finite

elements that do not suffer from shear-locking.

The interpolated orientation and angular curvatures are also compared in Table 2 with the outcome

from the additive interpolation, Eq. (3). The orientation is computed as �a ¼ expð�y�Þ on the weighted

average rotation vector �y ¼
P

WJyJ among those defining the nodal orientations, and the angular curva-

tures are computed as �kai ¼ dexp ð�y�Þ � �y;i ¼ dexp ð�y�Þ �
P

WJ ;iyJ .
In Fig. 4, the same hexahedron is shown after a rigid rototranslation H ¼ ðI þ e t�ÞU, with translation

vector t ¼ 5i1 þ 2i2 � 5i3 and rotation vector u ¼ pffiffiffiffi
69
p ði1 � 4i2 � 0:5i3Þ. By computing new oriento-position

and curvatures from the rototranslated corner frames, the helicoidal interpolation gives exactly the pre-

ceding values rototranslated, namely A0 ¼ HA and k0i ¼ Hki. This ensures that no strains xi ¼ k0i �Hki

arise from rigid motion, and is a numerical test for objectivity (the path independence of this interpolation

example is inherent in that no history is considered). Instead, the additive interpolation gives new orien-

tations and angular curvatures different from the preceding ones rotated by U, i.e. �a0 6¼ U�a and �k0ai 6¼ U�kai.

The error is measured by the rotation vector �u of the relative rotation �a0ðU�aÞT, and the angular strains
�xai ¼ �k0ai �U�kai, see Table 3.
7. Conclusion

The proposed helicoidal interpolation of the oriento-position field is based on the relative rototransla-

tions from the nodal oriento-positions. This fact ensures the consistency of the model issued by the

interpolation with the underlying actual field, in the sense that the former complies with the algebraic rules

of the special orthogonal manifold of rototranslations to which oriento-positions pertain. The consistency

of the model leads to a genuine differentiation, which is a valuable asset in finite-element approximations of

variational principles in solid mechanics. Achieving this consistency on multi-coordinate domains is a
prerogative of the proposed interpolation.
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The interpolation scheme is endowed with other merits. It is by nature invariant against rigid motion and

frame indifferent, and at the same time path-independent. It is general as for the number of coordinates of

the domain. Moreover, it is general in the sense that no definition of the weight functions has been yet

attempted, so it may be applied in principle to domains of whatever shape. The implicit interpolation
scheme is numerically solved by an efficient procedure, and is equipped with the parameterization-free core

of a threefold consistent linearization. It is based on the helicoidal modeling of the continuum (see Part I),

and constitutes the natural interpolation of the kinematical field allowing to build curved and curving finite

elements based on nodal frames, capable of displacements and rotations unrestricted in size (see Part III).

The proposed interpolation is guessed to play an important role in the modeling of shells in the near future.

The formulation greatly relies on the powerful formalism of dual numbers, which only makes the ro-

totranslation differential maps available in an affordable way (Appendix B). So, the interpolation of the

oriento-position is actually an extension of the interpolation of the orientation, which is also supplied in
this paper and can be useful in the context of classical modeling.

A possible drawback we can pick out in this interpolation scheme is the huge expression of the coefficient

tensors of the interpolation formulae. A careful investigation for obtaining simplified formulae, able to

increase the computational efficiency with a minimal loss of accuracy, would be an appreciated effort.

Appendix A. The differential maps of rotation

It was shown in Part I that subsequent differentiations of the rotation are characterized each one by a

new characteristic differential rotation vector. The differential vectors ud, uod, udod, characterizing the

differentiations up to third-order of a rotation tensor U, have been identified as the axial vectors of tensors

dUUT, odUUT and dodUUT, respectively. The aim of this Appendix is to relate such characteristic dif-

ferential rotation vectors to the variations of the rotation vector u, namely to establish the associated

differential maps up to third-order of the exponential map of the rotation.
In spite of the rather concise results presented, the task was very complex so that the underlying work

deserved a dedicated Report. Any details and related extensions can be found in Merlini (2003).

A.1. Nesting tensors

Consider an infinite family of tensor functions, defined by the following series expansions,
Um ¼ expmðuxÞ ¼
X1
n¼0

m!
ðnþ mÞ!ux

n ð8mP 0Þ: ðA:1Þ
Owing to the evident similarity with the exponential expansion, we borrow for such functions the symbolic

name expm. In particular, the first member of the family (the element zero) is just the rotation tensor,
U0 � U ¼ expðu�Þ. It is a matter of elementary algebra to recognize that Eq. (A.1) can be written as
Um ¼
Xl�1
n¼0

m!
ðnþ mÞ!ux

n þ m!
ðlþ mÞ!ux

lUlþm ð8mP 0; 8l > 0Þ: ðA:2Þ
The meaning of Eq. (A.2) is clear: truncating the series expansion Um at the lth term is exact, provided that

the last retained term be multiplied by a higher element of the same family, namely Ulþm. Notice that, at

increasing the integer m, the elements of the family approach to the unit tensor, and at the limit U1 ¼ I .
This family of tensors establishes a new representation of the rotation tensor, which is recursive in the

sense that the same truncation mechanism is valid for the rotation tensor itself and for each subsequent
element of the family: every element can in turn be truncated at whatever term l > 0. In particular, consider

truncating the series at the first term (l ¼ 1, the strongest truncation),
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Um ¼ I þ 1

mþ 1
uxUmþ1: ðA:3Þ
Eq. (A.3) enables us to envisage a recursive representation of the rotation tensor U0 exploiting all the

elements of the infinite family. This family can be seen as a nest of tensors, so their members will be called

the nesting tensors of the rotation.

The series expansion in Eq. (A.1) can be brought to a closed form based on two minimal tensorial bases,

ux and ux2:
U0 ¼ I þ auxþ b0ux2;

U1 ¼ I þ b0uxþ b1ux2;

Um ¼ I þ mbm�1uxþ bmux2 ð8mP 1Þ:
ðA:4Þ
Eqs. (A.4) are referred to as the short forms of the nesting tensors, and are of much interest for compu-

tational purposes. They are drawn using the recurrence formula ux3 þ u2ux ¼ 0, with u the rotation angle,
and exploit a recursive series of coefficient functions,
a ¼
P1
n¼0

ð�1Þn
ð2nþ1Þ!u

2n ¼ 1
u sinu;

b0 ¼ 0!
P1
n¼0

ð�1Þn
ð2nþ2Þ!u

2n ¼ 1
u2 ð1� cosuÞ;

b1 ¼ 1!
P1
n¼0

ð�1Þn
ð2nþ3Þ!u

2n ¼ 1
u2 ð1� aÞ;

bm ¼ m!
P1
n¼0

ð�1Þn
ð2nþ2þmÞ!u

2n ð8mP 0Þ ¼ 1
u2 ð1� mðm� 1Þbm�2Þ ð8mP 2Þ:

ðA:5Þ
The coefficient functions in Eqs. (A.5) can be computed by truncated series expansions from the left
column at small angles, and by the analytical formulae from the right column at angles far enough off the

singularity point. Unfortunately, the numerical ill-conditioning of the recursive analytical formulae is

growing with the coefficient index; so, the threshold angles for switching from the series to the analytical

expressions become quite large for high coefficients. This in turn demands a higher truncation term of the

series expansion in order to preserve accuracy. For the lowest twelve coefficient functions, a fairly good

accuracy of 1.E–15 in double precision floating point was achieved on a Pentium processor by keeping to

the parameters from Table 4. The accuracy was checked against ‘exact’ values computed in an arbitrary

precision software environment (Ring, 2003).
The nesting tensors are endowed with several remarkable properties. For instance, they share the

eigenvector u; they commute with ux, Umux ¼ uxUm; they commute with each other, UmUn ¼ UnUm; a

useful relation between two subsequent nesting tensors follows from Eq. (A.3), written as uxUm ¼
mðUm�1 � IÞ, in the forms
Um �Umþ1 ¼
1

ðmþ 1Þðmþ 2Þ ððmþ 2ÞUmþ1 � ðmþ 1ÞUmþ2Þux ð8mP 0Þ;

ðUm �Umþ1Þux ¼ I þ mUm�1 � ðmþ 1ÞUm ð8mP 1Þ;
the transpose nesting tensors are made of the opposite rotation, UT
m ¼ expmð�uxÞ; the transpose and in-

verse forms are tied by the relations
Um ¼ I � ðdetUmÞU�Tm ðU�1m � IÞ U�1m ¼ I � ðdetUmÞ�1UT
mðUm � IÞ;

UT
m ¼ I � ðdetUmÞðU�Tm � IÞU�1m U�Tm ¼ I � ðdetUmÞ�1ðUT

m � IÞUm:
Other properties useful for the derivations to follow can be found in Merlini (2003).



Table 4

Recursive coefficient functions. Threshold angles for switching from series to analytical expressions and truncation term in the series

expansion

Coefficient function Threshold angle (rad) Truncation term

a 1.E–8 0

b0 0.015 2

b1 0.5 5

b2 1.2 7

b3 1.4 7

b4 2.1 8

b5 2.3 8

b6 2.6 8

b7 2.7 8

b8 3.6 9

b9 4.0 9

b10 4.2 9
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A.2. Derivatives of the nesting tensors

By taking a single variation d and a double variation od of the nesting tensors,
dUm ¼ Um= : du� I ;

odUm ¼ Um= : odu� I þU
12 3 4

m==
..
.
ou� du� I ;

ðA:6Þ
the relevant first and second derivatives with respect to the rotation vector become identified as the third-

order and fourth-order tensors Um= and U
12 34

m== , respectively. The latter is of course endowed with symmetry

of the inner component vectors, since differentiations commute. This symmetry is marked by the notation

ð Þ12 34, where the positions 2 and 3 of the component vectors are underlined. From Eqs. (A.6), the dif-
ferentiation formula of the first derivative tensor is immediate,
dUm= ¼ U
12 34

m== : du� I : ðA:7Þ
On differentiation of functions expm from Eq. (A.1) by the formula
dexpmðuxÞ ¼
X1
n¼0

X1
l¼0

m!
ðnþ lþ 1þ mÞ!ux

nduxuxl; ðA:8Þ
the evaluation of Eqs. (A.6) yields concise expressions for the first and second derivative tensors of the

nesting tensors:
Um= ¼ �
1

2ðmþ 1Þ ðI
xð2Umþ1 � IÞ þ ð2Umþ1 � IÞI x þ uxI xðUmþ1 �Umþ2Þ þ ðUmþ1 �Umþ2ÞI xuxÞ;

U
12 34

m== ¼ �
1

2ðmþ 1Þ ð2I
xUmþ1= þ 2Umþ1=I

x þ uxI xðUmþ1= �Umþ2=Þ þ ðUmþ1= �Umþ2=ÞI xux

� I xI xðUmþ1 �Umþ2Þ � ðUmþ1 �Umþ2ÞI xI xÞS12 34:
ðA:9Þ
It is worth noting that the derivative tensors are recursively built with the lower-order derivatives of the two
next nesting tensors. In Eqs. (A.9), I x ¼ gjx� gj is the third-order Ricci’s tensor. The notation ð ÞS12 34
stands for the symmetric part of a fourth-order tensor with respect to the inner component vectors.
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A.3. Rotation differential maps up to third-order

The differential rotation vectors ud, uod, udod, characterizing the differentiations up to third-order of the

rotation tensor U, have been defined (Merlini, 2002) as the axial vectors of the following tensors, respec-
tively,
dUUT ¼ udx;

odUUT ¼ uodxþ
1

2
ðuoxudxþ udxuoxÞ;

dodUUT ¼ udodxþ
1

2
ðudoxudxþ uodxudxþ uddxuoxþ udxuodxþ uoxuddxþ udxudoxÞ:

ðA:10Þ
From Eqs. (A.10), by exploiting the recursive representation by means of nesting tensors, and the relevant

differentiation formulae Eqs. (A.6), the differential rotation vectors can be brought to the following forms,
ud ¼ Cdu;

uod ¼ Coduþ C
12 3

III : ou� du;

udod ¼ Cdoduþ C
12 3

III : ðdu� oduþ ou� dduþ du� douÞ

þ C
12 3 4

IV

 
� 1

2
ðI xCÞT132C12 3

III

�
þ C� CTC

�S12 3 4
!

..

.
du� ou� du;

ðA:11Þ
that can be inverted for
du ¼ C�1ud;

odu ¼ C�1uod � C
�12 3
III : uo � ud;

dodu ¼ C�1udod � C
�12 3
III : ðud � uod þ uo � udd þ ud � udoÞ

� C
�12 3 4
IV

 
� 3C

�12 3
III CC

�12 3
III

�
� 1

2
C�1I xCC

�12 3
III þ C�1 � I

�S12 3 4
!

..

.
ud � uo � ud:

ðA:12Þ
Eqs. (A.11) constitute the associated differential maps, up to third-order, of the exponential map of the

rotation. The mapping du! ud stated by Eq. (A.11)1 is well known in the literature on finite rotations and

represents the tangent map (or first differential map) of rotation (e.g. Cardona and Geradin, 1988; Ibra-

himbegovi�c et al., 1995; Borri and Bottasso, 1998; Borri et al., 2000; Ritto-Corrêa and Camotim, 2002;

Bauchau and Trainelli, 2003). As for the notation, forms like ð ÞTabc and ð ÞTabcd specify the transpose of a

third-order or a fourth-order tensor, respectively, by indicating the ordering of the component vectors in

the dyadic representation; for instance, ð ÞT132 transposes the two component vectors on the right, and
ð ÞT1324 transposes the two component vectors in the middle. The symmetric part of a tensor is denoted by

ð ÞSabc or ð ÞSabcd , where the positions of the two symmetric component vectors are underlined; in particular,

a double underlining as in ð ÞS12 3 4 stands for the full-symmetric part of a fourth-order tensor with respect

to the three component vectors on the right, which is defined as ð ÞS12 3 4 ¼ 1
6
ðð Þ þ ð ÞT1324þ

ð ÞT1243 þ ð ÞT1432 þ ð ÞT1342 þ ð ÞT1423Þ. Finally, ð Þ12 3 denotes a third-order symmetric tensor with respect

to the two component vectors on the right, and ð Þ12 3 4 denotes a fourth-order full-symmetric tensor with

respect to the three component vectors on the right.

The direct forms of the mapping tensors in Eqs. (A.11) are strictly related to the first nesting tensor and
to the relevant first and second derivative tensors,



5404 T. Merlini, M. Morandini / International Journal of Solids and Structures 41 (2004) 5383–5409
C ¼ U1;

C
12 3

III ¼ U
S12 3

1= ;

C
12 3 4

IV ¼ U
12 34S12 3 4

1== :

ðA:13Þ
Tensors C�1, C
�12 3
III , C

�12 3 4
IV in Eqs. (A.12) represent the inverse forms of the mapping tensors. The direct and

inverse forms are tied by the reciprocity relations
C
�12 3
III ¼ C�1ðC12 3

III C
�1ÞT132C�1;

C
12 3

III ¼ CðC�12 3III CÞT132C;

C
�12 3 4
IV ¼ C�1ððC

12 3 4

IV C�1ÞT1423C�1ÞT1423C�1;

C
12 3 4

IV ¼ CððC
�12 3 4
IV CÞT1423CÞT1423C:

ðA:14Þ
A.4. Derivatives of the rotation exponential and tangent maps

For the sake of completeness and for future reference, we give the expressions of the derivatives of the
exponential and tangent maps of the rotation, namely tensors U � U0 and C � U1. According to the

differentiation formulae
dU ¼ U= : du� I ;

dC ¼ C= : du� I ;
ðA:15Þ
the derivative tensors become identified by the third-order tensors
U= � U0= ¼ ðUI�CTÞT132;

C= � U1= ¼ C
123

III þ
1

2
ðI�CÞT132C:

ðA:16Þ
The variations of such derivative tensors,
dU= ¼ U
12 34

== : du� I ;

dC= ¼ C
12 34

== : du� I ;
ðA:17Þ
identify the second derivative tensors U
12 34

== � U
12 34

0== and C
12 34

== � U
12 34

1== , cf. Eq. (A.7).

Appendix B. The differential maps of rototranslation

Establishing the associated differential maps of the exponential map of the rototranslation is a plain

extension of the formulation drawn in Appendix A, owing to the properties of the algebra of dual numbers

applied to dual tensors. In this Appendix, we give the relations between the differential helices character-

izing differentiations up to third-order of a rototranslation tensor and the variations of the helix itself.

Meanwhile, we point out some noteworthy explicit expressions, as the dual parts of the quantities involved

are closely related with appropriate quantities of the case of rotation. In particular, it will be seen that they

always appear as one-order higher derivatives. It should be noted that an explicit formulation of the dif-
ferential maps of the rototranslation would have been very much harder. Details and extensions can be

found in Merlini (2003).
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B.1. Dual nesting tensors

The infinite family of dual nesting tensors of the rototranslation is defined the same way as for the case of

rotation by the series expansions
Hm ¼ expm ðgxÞ ¼
X1
n¼0

m!
ðnþ mÞ! gx

n ð8mP 0Þ: ðB:1Þ
Again, the element zero coincides with the rototranslation dual tensor, H0 � H ¼ expðgxÞ, with g the helix.

The recursive truncation mechanism operated by tensors Hm is evident from the relation
Hm ¼
Xl�1
n¼0

m!
ðnþ mÞ! gx

n þ m!
ðlþ mÞ! gx

lH lþm ð8mP 0; 8l > 0Þ; ðB:2Þ
which reduces to the strongest truncation for l ¼ 1,
Hm ¼ I þ 1

mþ 1
gxHmþ1: ðB:3Þ
By using the helix explicit expression g ¼ uþ eq in the series expansions of Eq. (B.1), the following

explicit formula is obtained,
expmðgxÞ ¼ expmðuxÞ þ e
X1
n¼0

X1
l¼0

m!
ðnþ lþ 1þ mÞ!ux

nqxuxl; ðB:4Þ
having a dual part linear with q and worth comparing with Eq. (A.8). Thus, by recalling Eq. (A.6)1, the dual

nesting tensors are found to possess the explicit expression
Hm ¼ Um þ eUm= : q� I ; ðB:5Þ
built with the corresponding nesting tensors of the rotation and their first derivative tensors. The dual part

of Eq. (B.5) is linear with vector q and worth comparing with Eq. (A.6)1.

The nesting tensors of rototranslation are endowed with all the properties of the nesting tensors of
rotation. In particular, the short forms based on two minimal dual-tensorial bases gx and gx2 are given,
H0 ¼ I þ Agxþ B0gx
2;

H1 ¼ I þ B0gxþ B1gx
2;

Hm ¼ I þ mBm�1gxþ Bmgx
2 ð8mP 1Þ;

ðB:6Þ
being used for numerical evaluations. They are obtained by the recurrence formula gx3 þ g2gx ¼ 0 (with g
the helix dual magnitude) and exploit the recursive series of dual coefficient functions
A ¼
P1
n¼0

ð�1Þn

ð2nþ 1Þ! g
2n ¼ 1

g
sin g;

B0 ¼ 0!
P1
n¼0

ð�1Þn

ð2nþ 2Þ! g
2n ¼ 1

g2
ð1� cos gÞ;

B1 ¼ 1!
P1
n¼0

ð�1Þn

ð2nþ 3Þ! g
2n ¼ 1

g2
ð1� AÞ;

Bm ¼ m!
P1
n¼0

ð�1Þn

ð2nþ 2þ mÞ! g
2n ð8mP 0Þ ¼ 1

g2
ð1� mðm� 1ÞBm�2Þ ð8mP 2Þ

ðB:7Þ
Such coefficients allow also the following recursive explicit expressions,
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A ¼ aþ e ðb1 � b0Þuq;

Bm ¼ bm þ e
1

mþ 1
ðbmþ2 � bmþ1Þuq ð8mP 0Þ;

ðB:8Þ
the dual parts of which are once again linear with the helix dual part magnitude q. Although Eqs. (B.8)

could be used to build the dual coefficient functions from Eqs. (A.5), the direct computation from the series

and analytical expressions of Eqs. (B.7) is preferred. However, Eqs. (B.8) suggest that the threshold values

in Table 4 should be increased for the dual case; in practice, it is found that just the coefficients A and B0 are

affected. For such coefficients, we propose to raise the threshold values to 0.001 and 0.1 (and the truncation

terms to 2 and 4), respectively, being satisfied with an accuracy of 1.E–13 for the dual parts. For all the dual
coefficients, the helix primal part magnitude u can be tested against the threshold real value.

B.2. Derivatives of the dual nesting tensors

The differentiation formulae
dHm ¼ Hm= : dg� I ;

odHm ¼ Hm= : odg� I þH
12 34

m==
..
.
og� dg� I ;

ðB:9Þ
enable identifying the first and second derivatives of the dual nesting tensors with respect to the helix, as the

third-order and fourth-order dual tensors Hm= and H
12 34

m== , respectively. It also follows the differentiation

formula of the first derivative dual tensor,
dHm= ¼ H
12 34

m== : dg� I : ðB:10Þ
The extension of Eqs. (A.9) to the first and second derivative tensors of the dual nesting tensors is

straightforward, and yields
Hm= ¼ �
1

2ðmþ 1Þ ðI
xð2Hmþ1 � IÞ þ ð2Hmþ1 � IÞI x þ gxI xðHmþ1 �Hmþ2Þ þ ðHmþ1 �Hmþ2ÞI xgxÞ;

H
12 34

m== ¼ �
1

2ðmþ 1Þ ð2I
xHmþ1= þ 2Hmþ1=I

x þ gxI xðHmþ1= �Hmþ2=Þ þ ðHmþ1= �Hmþ2=ÞI xgx

� I xI xðHmþ1 �Hmþ2Þ � ðHmþ1 �Hmþ2ÞI xI xÞS12 34:
ðB:11Þ
For the first derivative of the dual nesting tensors, the explicit expression is easily drawn by recalling Eqs.

(B.5), (A.6)1 and (A.7),
Hm= ¼ Um= þ eU12 34

m== : q� I : ðB:12Þ
It is built with the first and second derivative of the corresponding nesting tensors of the rotation. The dual

part of Eq. (B.12) is linear with vector q and worth comparing with Eq. (A.7).

B.3. Rototranslation differential maps up to third-order

From the definition of the differential helices gd, god, gdod, characterizing the differentiations up to third-

order of a rototranslation tensor H (Merlini, 2002),
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dHHT ¼ gdx;

odHHT ¼ godxþ
1

2
ðgoxgdxþ gdxgoxÞ;

dodHHT ¼ gdodxþ
1

2
ðgdoxgdxþ godxgdxþ gddxgoxþ gdxgodxþ goxgddxþ gdxgdoxÞ;

ðB:13Þ
the associated differential maps of the exponential map of the rototranslation are obtained in either the
direct form
gd ¼ Kdg;

god ¼ Kodgþ K
12 3

III : og� dg;

gdod ¼ Kdodgþ K
12 3

III : ðdg� odgþ og� ddgþ dg� dogÞ

þ K
12 3 4

IV

 
� 1

2
ðI xKÞT132K12 3

III

�
þ K� KTK

�S12 3 4
!

..

.
dg� og� dg;

ðB:14Þ
and the inverse form
dg ¼ K�1gd;

odg ¼ K�1god � K
�12 3
III : go � gd;

dodg ¼ K�1gdod � K
�12 3
III : ðgd � god þ go � gdd þ gd � gdoÞ

� K
�12 3 4
IV

 
� 3K

�12 3
III KK

�12 3
III

�
� 1

2
K�1I xKK

�12 3
III þ K�1 � I

�S12 3 4
!

..

.
gd � go � gd:

ðB:15Þ
The mapping tensors in Eqs. (B.14) come from the first dual nesting tensor and the relevant first and

second derivatives,
K ¼ H1;

K
12 3

III ¼ H
S12 3

1= ;

K
12 3 4

IV ¼ H
12 34S12 3 4

1== :

ðB:16Þ
The inverse form K�1, K
�12 3
III , K

�12 3 4
IV of the mapping tensors in Eqs. (B.15) are tied with the direct forms by

the reciprocity relations
K
�12 3
III ¼ K�1ðK12 3

III K
�1ÞT132K�1;

K
12 3

III ¼ KðK�12 3III KÞT132K;

K
�12 3 4
IV ¼ K�1ððK

12 3 4

IV K�1ÞT1423K�1ÞT1423K�1;

K
12 3 4

IV ¼ KððK
�12 3 4
IV KÞT1423KÞT1423K:

ðB:17Þ
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B.4. Derivatives of the rototranslation exponential and tangent maps

The derivatives of the exponential and tangent maps of the rototranslation, namely tensors H � H0 and

K � H1, are also given. From the differentiation formulae
dH ¼ H= : dg� I ;

dK ¼ K= : dg� I ;
ðB:18Þ
they become identified as the third-order dual tensors
H= � H0= ¼ ðHI xKTÞT132;

K= � H1= ¼ K
12 3

III þ
1

2
ðI xKÞT132K:

ðB:19Þ
We also give the explicit forms for such derivative dual tensors,
H= ¼ U= þ eU12 34

== : q� I � U0= þ eU12 34

0== : q� I ;

K= ¼ C= þ eC12 34

== : q� I � U1= þ eU12 34

1== : q� I ;
ðB:20Þ
where U= and C= are given by Eqs. (A.16). Again, the dual parts of Eqs. (B.20) are linear with vector q and

should be compared with Eqs. (A.17).

B.5. The translation vector

We close Appendix B with a noteworthy characterization of the translation vector in terms of the single

primal and dual parts of the helix. We know from Eqs. (A.10)1 and (A.15)1 that dU ¼ udxU ¼ U= : du� I .
Moreover, we know the form of a rototranslation tensor by means of the rotation tensor U and the

translation vector t (see Part I), so that, by recalling Eqs. (B.5) and (A.16)1, we can write

H ¼ Uþ e txU ¼ Uþ eU= : q� I . By comparing the dual part of the rototranslation H with dU, and

recalling Eq. (A.11)1, we arrive at the relation
t ¼ Cq: ðB:21Þ
So, the translation vector is depending linearly on the dual part of the helix, and nonlinearly on the primal

part. Eq. (B.21) maps the linear part of the helix onto the translation vector. It is worth noting that this map

exploits the same mapping tensor as the tangent map of the rotation.
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