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Abstract

The approximate, substitute model of the position and orientation fields over a finite, multi-coordinate domain is
built in a consistent way with the helicoidal modeling of the continuum, as proposed in Part I for a discrete application
of variational principles in computational elasticity. The set of the position and orientation, referred to as oriento-
position, is made dependent multiplicatively on the nodal values through relative rototranslations, and an implicit
interpolation formula is written by weighting the relative helices. The proposed interpolation scheme is frame-invariant
and path-independent, and the resulting weighted average oriento-position is obtained numerically. A consistent lin-
earization of the model field is carried out by developing explicit formulae for the derivatives, up to third-order, of
orthogonal tensors. The parent interpolation of the orientation field, which can be useful by itself in the context of
classical modeling, is also discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the finite-element approximation of a variational principle, the process of making a field of variables
dependent on a discrete number of variables, is referred to as interpolation among the nodal values. This
process yields a model of the field to substitute for the actual field over the element domain. Of course, the
model is expected to be consistent, i.e. respectful of the algebraic rules peculiar to the space to which the
variables pertain. When the variables belong to a special orthogonal manifold as the particle orientations or
the particle oriento-positions do (see Part I), then the non-commutative and multiplicative character of the
composition of rotations and rototranslations must be preserved in the model and borne in mind during its
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differentiation. In such a sense the interpolation of the orientation and oriento-position fields ought to be
multiplicative, i.e. based on the relative rotation, or relative rototranslation, of any particle from the nodal
orientations or oriento-positions, respectively.

In this paper we develop a multiplicative interpolation scheme capable of determining either the
orientation or the oriento-position of a frame over a multi-coordinate domain from any number of given
frames. The present formulation constitutes the consistent extension to multi-coordinate domains of a
multiplicative interpolation available for the case of frames defined over a one-coordinate domain. A
formula for interpolating sections on space-curved beams was first proposed by Borri and Bottasso
(1994a,b). A similar multiplicative interpolation for beam elements has been independently developed by
Crisfield and Jeleni¢ (1999) and Jeleni¢ and Crisfield (1999). More recently, Borri et al. (2000) rephrased
their interpolation with a description of the configuration that coincides, although with a different for-
malism, with the one adopted in this work. Such interpolations have been successfully exploited both in
beam elasticity problems and in rigid body dynamics (in the latter case, the coordinate is the time instead
of the section abscissa). The multiplicative interpolation we propose for solid domains is based on the
relative rotations, or relative rototranslations, from the nodal frames and so it is, by design, frame-
indifferent and invariant under superposed rigid-body motion. Since no motion of the nodal frames is
involved, the interpolation also guarantees path-independent solutions. This is in contrast with most of
the commonly adopted interpolations, that miss either the property of frame invariance or that of path-
independence (Crisfield and Jeleni¢, 1999; Jeleni¢ and Crisfield, 1999). The proposed interpolation is
governed by an implicit nonlinear statement and relies on a numerical solution, which however proves
rather efficient.

While obtaining an interpolated orientation, or oriento-position, is by itself a quite simple problem to
solve, the linearization of the model field turns out to be a much harder problem. For the purposes of a
finite-element approximation, a threefold linearization is needed, involving spatial, virtual and incre-
mental variations. Such variations are unavoidably coupled in the case of a field of orthogonal tensors,
and entail mixed differentiations up to third-order, for a total of seven differentiations. The aim of
the linearization process of the multiplicative interpolation is to tie the seven independent differential
vectors or tensors characterizing such differentiations to the relevant nodal variation variables. The main
difficulty in this process is to establish the relations between differential rotation vectors and variations of
rotation vectors, or between differential helices and variations of helices for the case of rototransla-
tions. This is a quite difficult task, involving the derivatives of the exponential map and yielding the
associated differential maps. The interest in the computation of the derivatives of the exponential map is
alive nowadays, as evidenced by a number of recent works (Rosati, 1999; de Souza Neto, 2001; Ortiz
et al., 2001; Ritto-Corréa and Camotim, 2002; see also Itskov, 2000, 2002; Itskov and Aksel, 2002). In
order to evaluate the needed derivatives, we introduce an original, recursive representation of ortho-
normal tensors by means of an infinite family of so-called nesting tensors, which make it easier to dif-
ferentiate up to any order the rotation and the rototranslation tensors in the context of vectorial
parameterizations.

The formulation developed in this paper for a consistent kinematical field is based on the helicoidal
modeling of the continuum as described in Part 1. It can cope with arbitrarily large displacements and
rotations, and will be used in Part III to build finite elements capable of large curvatures and suitable for
geometrically nonlinear analyses. In Section 2, the multiplicative interpolation of the orientation field is
formulated and the relevant properties are discussed. Section 3 gives the extension to the helicoidal
interpolation of the oriento-position field. The linearization of the model field is accomplished in Section 4.
In Section 5 the computational algorithm is discussed, and the linearization formulae are numerically
verified. Finally, an example of interpolation is given in Section 6 and conclusions are drawn in Section 7.
The formulation of the differential maps is outlined in Appendix A (case of rotations) and Appendix B (case
of rototranslations).



T. Merlini, M. Morandini | International Journal of Solids and Structures 41 (2004) 5383-5409 5385

2. Weighted average orientation

Let us concentrate on some well-known underlying features that characterize positions and orientations.
Positions of points in space are measured by distances, while orientations of frames are measured by rel-
ative rotations, and such geometrical measures are deeply different in character. Distances are elements of
the linear Euclidean vector space, and so they commute and sum up additively, while rotations belong to
the group of special orthogonal transformations, hence they do not commute and compose multiplicatively.
Now, consider the problem of interpolating a position or an orientation among given data. As far as the
position is concerned, the simplest interpolation is achieved by looking for a weighted average position
based on weighted distances, i.e. by solving the equation

> Wi(x—x,) =0. (1)

J=1

Eq. (1) gives the position vector x of the point with null weighted average of distances from N given points
with position vectors x; and weights W;(J = 1,2,...,N). By exploiting the same concept, an interpolated
orientation can be sought as a weighted average orientation based on appropriate weighted ‘distances’, such
to measure the relative orientations in a way consistent with the special orthogonal manifold to which
rotations belong. By recalling the exponential map of the rotation and the inverse logarithmic map (namely
@ = exp(px) and ¢x = log @, see Part I), the most natural choice for such ‘distance’ appears to be the
logarithm of the relative rotation from a given frame. Therefore, the following equation is written,

N
> W log(aay) =0, (2)
J=1
forcing to zero the weighted average of the logarithms of the rotation tensors from N given frames, with
orientation tensors a; and weights 7}, to a frame with orientation tensor a. Although not strictly necessary,
it is understood throughout the paper that the frames are made of orthonormal triads, and that brings the
orientation tensors to be actually rotation tensors.

Eqgs. (1) and (2) state the appropriate interpolation schemes for either kinds of fields. We can interpret
the position x as the sum of a known position x,; plus the distance x — x;, and we can do so N times. The
linear Eq. (1) weighs such distances and gives the interpolated position in closed form, x = > W)x, for
normalized weights. This is an additive interpolation scheme. Analogously, the orientation « is interpreted
N times as a known orientation o; multiplied by a relative rotation P, = mJT, see Fig. 1 (where, for clarity,

Fig. 1. Example of multiplicative interpolation of the orientation.



5386 T. Merlini, M. Morandini | International Journal of Solids and Structures 41 (2004) 5383-5409

the frames are kept separate in space). Eq. (2) weighs the logarithms ¢,x = log ®,, hence the relative
rotation vectors @, = axlog®,; however, Eq. (2) is an implicit nonlinear equation and cannot give in
general the interpolated orientation « in closed form, but needs a numerical solution (see Section 5.1). This
is a multiplicative interpolation scheme.

The interpolation scheme of Eq. (2) is objective. In order to ascertain the frame indifference, consider the
reference frame back-rotated by a rotation ', so that the orientations of the given frames are represented
by orientation tensors &; = a;f. Then, application of Eq. (2) yields a weighted average orientation & = af,
representing the same interpolated frame with respect to the new reference frame. This ensures the frame
indifference of the interpolation scheme. Manifestly, the interpolation scheme is also invariant for super-
posed rigid motion; e.g. for new, rigidly rotated orientation tensors &, = fa,, the weighted average ori-
entation becomes & = fa. This is easily checked using the identities ¥exp(px)¥' = exp(Po x P') =
exp((Po)x) and log(PPYP") = P(log®)P", valid for any two orthonormal tensors @ and 'P.

In spite of the analogy of the definitions of weighted average position and weighted average orientation,
the multiplicative character of the composition of rotations entails an important consequence about the
significance of averaging rotation tensors. After assigning arbitrary displacements to the given points, or
arbitrary rotations to the given frames, it is seen that the displacement of the interpolated position coincides
with the weighted average of the displacements of the given points, while the rotation of the interpolated
orientation does not correspond in general to the weighted average of the rotations of the given frames. Let
us see this in detail. By moving x; to new positions x/, = x, + u, and interpolating by Eq. (1) x' = > W)x/,
one computes a displacement # = x’ — x coincident with the weighted average displacement, u = Wyu;.
On the contrary, by rotating a, to new orientations o, = ®,a, and using Eq. (2) to interpolate &' from
S W log(aal @) = 0, one obtains a rotation @ = o’a’ that in general does not correspond to any kind of
‘weighted average rotation’ of the rotations @;. It can be argued that in the Euclidean linear space,
averaging the displacements of different points, is consistent with averaging the point positions; on the
special orthogonal manifold, instead, averaging the rotations of different frames, is in general inconsistent
with averaging the frame orientations. However, in few particular cases the rotation of the weighted
average orientation coincides with the weighted average of the rotations from the given orientations, as
obtained by solving the equation ) leog(didﬁ) = 0. It is easy to see that this is true (i) when the ori-
entations of the given frames coincide to each other (case of rotations from a common orientation,

a=a; =ay =---=ay), (i) when all the given frames undergo a unique rotation (rigid rotation,
=P, =¢,=---=®y) and (iii) when the rotations are coaxial (a direction n exists such that
®n=®n=>n=---= Pyn = n), hence they commute and sum up (for instance, the planar case).

These considerations are quite important and permeate the whole interpolation philosophy we follow in
a nonlinear finite element context. The local orientation is interpolated among the nodal orientations in the
same way in either the initial configuration or a deformed configuration, and the angular curvature (which
characterizes the gradient of the orientation, k, = aax(a'a,s), see Part I) is computed from the nodal
orientations in the same way in either configurations. No interpolation is attempted among the nodal
rotations nor an angular strain is directly computed from them. The local rotation is recovered by com-
paring the local orientations in the deformed and initial configurations, and the angular strain is computed
as the appropriate change of angular curvature (Part I, o, =k, — ®k,). Since the local orientation and
curvature are computed independently from the past history of the nodal orientations, our objective
interpolation scheme is also intrinsically path-independent. As the frame invariance is achieved by averaging
relative rotations, the path independence is closely related with the guess of interpolating orientations
instead of their evolution, i.e. rotations.

This philosophy departs from the standard interpolation schemes adopted in finite elasticity. It is cus-
tomary, when using a vectorial parameterization of the rotation, to rely on additive interpolations of either
the total rotation vector or an incremental rotation vector. Consider, with the present notation and
assuming orthonormal orientation tensors, the following interpolation formula,
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N

Z W;(loga — loga;) = 0. (3)

J=1

By introducing the inverse exponential map yx = loga, Eq. (3) yields the rotation vector defining the
orientation a in closed form, y = >~ W;y,. This interpolation does not depend on the evolution of the given
frames, so it is path-independent. However, it is not frame-indifferent in three-dimensional space. In fact, by
applying Eq. (3) to the orientations &, = a8, measured from a reference frame back-rotated by p', the
consistent orientation & = aff cannot in general be achieved, simply because the rotation vector of the
composition of two subsequent rotations is not the sum of the respective rotation vectors. This kind of
interpolation is often cast in terms of rotations from the initial configuration (total rotations), see e.g.
Cardona and Geradin (1988), Ibrahimbegovi¢ et al. (1995), Ritto-Corréa and Camotim (2002); in these
formulations, it coincides with Eq. (3) if the initial orientations are identical. Alternatively, the incremental
rotation (from a converged solution) or the iterative rotation (during the solution process) is interpolated
with the additive formula y; = >~ W)y,,, and used to update the total rotation (refer to Jeleni¢ and Crisfield,
1999, and to works quoted therein). The invariance of some incremental/iterative interpolations under
superposed rigid-body motion has been recently proved by Ibrahimbegovi¢ and Taylor (2002) with a de-
tailed analysis. However, it is common notion that additive interpolations of incremental/iterative rotations
lead to path-dependent solutions.

The non-invariance and/or path-dependence of the additive interpolation schemes is discussed deeply by
Crisfield and Jeleni¢ (1999) and Jeleni¢ and Crisfield (1999). They conclude that none of the commonly used
interpolation formulae can ensure frame invariance and path independence at the same time. In their
work—which however deals only with beam elements—they propose to interpolate the relative rotation
vectors from an appropriate reference frame, properly tied to the nodal orientations. By this way, they are
able to release the interpolation from the evolution of the nodal orientations, so attaining at the same time
frame-invariance and path-independence. This interpolation scheme is in agreement with the one-dimen-
sional helicoidal interpolation already published by Borri and Bottasso (1994a,b) in the modeling of space-
curved beams. The scheme we propose in the present work can be seen as the extension to multi-coordinate
domains of such kind of multiplicative interpolation, together with a systematic linearization that was
lacking in that works.

3. Weighted average oriento-position

Oriento-positions in space are measured by rototranslations, and rototranslations are orthonormal dual
tensors belonging to a special orthogonal group (see Part I). We denote with H = exp(yx) and gx = log H
the exponential and logarithmic maps of a rototranslation H, of helix 5. A dual tensor
A = Xa = (I +exx)a represents an oriento-position, which is assumed orthonormal so that 44" = I.
Owing to the close analogy with orientation and rotation tensors, and thanks to the powerful formalism of
the algebra of dual numbers (Angeles, 1998), the extension of the concept of weighted average orientation
to the case of the oriento-position is straightforward. In this case, the ‘distance’ on which the weighted
average oriento-position is based is the logarithm of the relative rototranslation from a given applied frame,
i.e. the relative helix. The interpolation is therefore referred to as helicoidal interpolation and is governed by
the equation

> W log(44]) = 0. 4)

N
J=1



5388 T. Merlini, M. Morandini | International Journal of Solids and Structures 41 (2004) 5383-5409

Fig. 2. Example of multiplicative interpolation of the oriento-position.

Eq. (4) forces to zero the weighted average of the logarithms of the rototranslation tensors from N given
applied frames, with oriento-position tensors A; and weights 7}, to an applied frame with oriento-position
tensor A.

As for the case of the orientation, we observe that the interpolation scheme is multiplicative: for N times,
the oriento-position 4 is a known oriento-position A; multiplied by a relative rototranslation H, = AAT
and Eq. (4) is weighing the logarithms #,x = log H,, hence the relative helices #§, = ax logH,. The scheme
is depicted in Fig. 2, where now the location in space of the frames is pertinent. In the example of Fig. 2, we
can also compare the present interpolation, originating from the helicoidal modeling, with the classical
independent interpolations of the position and orientation fields (dash sketch); in the latter case, the same
orientation (note that the primal part of dual tensor A4 is just the orientation «) is located in a position
independently interpolated among the given positions. In the helicoidal interpolation, of course, the implicit
nonlinear Eq. (4) must be solved numerically for the oriento-position A4 (see Section 5.2).

By the same arguments as for Eq. (2), we infer that the interpolation scheme of Eq. (4) is objective.
Moreover, it is seen that, after assigning arbitrary rototranslations to the given applied frames, the roto-
translation of the interpolated oriento-position does not correspond in general to the weighted average of
the rototranslations of the given applied frames. This confirms that averaging the rototranslations of dif-
ferent applied frames is in general inconsistent with averaging the frame oriento-positions. However, the
rototranslation of the weighted average oriento-position coincides with the weighted average of the roto-
translations in three particular cases: (i) obviously, when the rototranslations depart from a common
oriento-position; (ii) when the rototranslation is unique for all the given applied frames, that is when the
motion is rigid; (iii) when rototranslations are coaxial, and the interpolation becomes controlled by a scalar
equation involving dual magnitudes of helices that commute and sum up. Again, by keeping to the
interpolation of oriento-positions instead of rototranslations, an intrinsically path-independent scheme is
achieved.

4. Linearization of the model field

In view of the formulation of finite elements, it is important to be able to differentiate the model of the
kinematical field of orthonormal tensors set up by the interpolation scheme, with respect to either the
spatial, virtual and incremental variations. In the differentiation process, we extend the formulation up to
the relationship among the local variation variables and the nodal variation variables. In fact, we can, and
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shall avoid choosing the actually free variables representing the nodal orthonormal tensors, so we do not
reach linear expressions with respect to the free-variable variations. In a sense, this differentiation process is
the parameterization-free core of the linearization; nevertheless, we shortly refer to it as the (threefold)
linearization of the interpolation. Indeed, it should be pointed out here that the choice of a parameteri-
zation is still unavoidable for the differentiation of the relative rotation (or rototranslation) field inside the
interpolation domain, and for this purpose we will resort to the natural parameterization based on the
exponential map.

The linearization of the proposed interpolation of an orthonormal field is identical for the cases of
orientations and oriento-positions. In the present context of the helicoidal modeling, we just refer to the
case of the oriento-position field. The reader interested in linearizing the interpolation of the orientation
field can follow the present derivation and substitute orientations for oriento-positions, rotations for ro-
totranslations, and so on, and drop any reference to dual quantities. For the present case, the linearization
can be outlined as follows. The spatial, virtual and incremental variations of the oriento-position field are
coupled because of the inherent nonlinearity in the representation of rototranslations (see Part I), and entail
mixed differentiations up to third-order for a total of seven differentiations. Seven independent differential
dual vectors or tensors characterize such differentiations. Such local variation variables are related to the
appropriate nodal variation variables by the linearization of the multiplicative model of the kinematical
field, through appropriate relative variation variables, so that the couplings among the variation variables
are consistently preserved.

In a finite element context, we are concerned with interpolation within a continuum. We describe the
domain of interest by means of a number » of material coordinates, say &' (i = 1,2,...,n); typically, n = 3
for a three-dimensional solid, » = 2 on a surface (shells) and » = 1 along a line (beams). The weights ¥, are
N scalar functions of the domain coordinates, normalized so that Y W, = 1 everywhere; they are known
functions, and so are their derivatives W;; with respect to the domain coordinates. The notation
() o= ( ); ® g' means the gradient, so W5 are the gradients of functions ;. The oriento-position field is
defined as a dual tensor function of the abstract placement identified by a set of values of the coordinates
within the domain, symbolically 4 = A(é1 JE L, &"). On the other hand, A, are the nodal oriento-posi-
tions at N abstract placements identified by some coordinates &, and are assumed as known. In this paper,
we implicitly refer to the case of three-dimensional solids (n = 3). However, accounting for a different
number of coordinates is immediate.

4.1. Local and nodal variation variables

The quantities to be considered in the interpolation are the oriento-position A itself, its virtual, incre-
mental and mixed virtual-incremental variations 64, 04, 084, the finite gradient 4,; and the relevant
virtual, incremental and mixed virtual-incremental variations 84, 04, 034 5. Since the spatial, virtual
and incremental variations are independent of each other, the mixed changes involve differentiations up to
the third-order. A study of the differentiation of rototranslation tensors (see Part I and Merlini, 2002) yields
appropriate expressions for such variations, which we group in the following scheme, where we enclose the
orthogonality condition for the sake of completeness:

ATA=1
AT54 = (A" az)x
AT04 = (A ax)x (5

AT08A = (A" ags)x + % (A as)x(A" as)x + (A" as)x(A" ap)x)
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and
AT A4,y = (Ak)
A"8A ) = (A ks) — = (A" as)xA k) + (A" az)x(A k)"

AT0A )y = (ATko)* — 5 (A" ap)xATk)* + (A a)x(A k) (6)

W — ] —

A"084 ), = (A kgs)" — 3 (A" aos)xA k) + (A" ags)x(A k)
1
=5 (A a0 )xA ks + (A" as)xA ko) + (A" ao)x(A"kes)" + (A" as)x(A" ko)

Seven differential dual tensors characterize the seven variations: the virtual, incremental and mixed virtual-
incremental oriento-position vectors a;s, dp, @y, the finite curvature k, and the virtual, incremental and
mixed virtual-incremental curvatures ks, kg, kys. Such characteristic variation variables are defined by Egs.
(5) and (6), and are representative of the axial vectors of second-order dual tensors like 4784, ..., and of
the axial tensors of third-order dual tensors like A" A4 /@, .. They will be referred to as the local variation
variables and constitute the outcome of the linearization process of the interpolation.

The interpolation is performed among the nodal oriento-positions A;. Furthermore, the relevant virtual,
incremental and mixed virtual-incremental variations are considered. According to similar expressions

A}8A; = (A as;)x
AJ0A; = (A;ay)x (7)

1
A}@SAJ = (Ajaaﬁj)x + 3 ((A}aaj)x(A;aM)x + (A}agj)x(A}an)x),

the virtual, incremental and mixed virtual-incremental nodal oriento-position vectors as;, @y, ass; char-
acterize such variations. They are referred to as the nodal variation variables and constitute the input
arguments of the interpolation linearization, to be regarded as independent variables.

It is worth discussing the presence of the mixed virtual-incremental variation variables ag; and kg at a
generic place, and ag;; at the nodes. At the nodes, where the actually free variables of a problem are defined,
the mixed variation variables ay;; can, and will be solved for the simple variation variables a;; and ag;, using
the differential maps giving the variation variables from the variations of the actually free variables. At a
generic internal place, where the variables are not actually free variables, but are nonlinearly dependent on
the nodal free variables, the mixed variation variables ags and kg cannot be solved in a similar way for the
relevant simple variation variables a;, ay, or ks, ky. Instead, they must be interpolated independently and
undergo independent dependencies on ag;;.

4.2. Relative variation variables

Let us focus now on the relative rototranslations H, = A4} from the known nodal oriento-positions to
the interpolated local oriento-position, and on the relative helices defined as the dual axial vectors of the
relevant skew-symmetric logarithmic maps, 1, = ax logH ;. The spatial, virtual and incremental variations
of the relative rototranslations obey by themselves expressions analogous to Egs. (5) and (6), that actually
define seven characteristic differential dual tensors, referred to as the relative variation variables. They are
the virtual, incremental and mixed virtual-incremental relative helices #;,, #a,, #s5/, the finite relative strain
@y, and the virtual, incremental and mixed virtual-incremental relative strains @s;, @y, g, . Here, we leave
out the relevant defining formulae; they can be obtained from Egs. (5) and (6), simply replacing A with H;,
a with #,, and k with @, everywhere.
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The interpolated oriento-position can be understood as the unique result of N different compositions of
rototranslations, namely the oriento-position of each node J followed by the relevant relative rototrans-
lation, 4 = H,A,. By taking the variations of the oriento-position field, the variations of either the relative
rototranslations and the nodal oriento-positions are involved. By working on the equations defining the
respective variation variables, it is possible to obtain, after complicated manipulations (Merlini, 2002), a
relationship between the local variation variables, the relative variation variables and the nodal variation
variables,

as = s, + i{ﬂlaf

ay = iy + Hyay, )
- - 1 - - ~ -
o5 = Nogy + H a0, — 3 ((Haar)xns; + (H yas;)xiq,)
and
k=ao;
k5 = &)5] — 5 (ﬁj(l&])X(I)J
ky = oy — 5 (Hjan)Xd)J
) ) ) )
kos = Wass — 3 (H 05 )x; — 5 ((H yaz;)xts; + (H a5, )x@ey)

+t3 ((H yac;)x(nsy; + Hyasy)x + (Hyas;)x(e, + Hae,)x)@;
- (ifjaaj ® 5, + Has; ® Moy + Hjay ® ifjaa/)s @y

By means of Egs. (8) and (9), the outcome of the linearization, i.e. the local variation variables, are made
dependent on the relative variation variables. In the linearization process, we shall exploit the inverse
relationship, obtained by solving Egs. (8) and (9) for the relative variation variables.

4.3. Linearization equations

The linearization of the interpolation is accomplished by rewriting the statement of weighted average
oriento-position, Eq. (4), in terms of the axial vectors of the logarithms of the relative rototranslations, i.e.
the relative helices, and by differentiating it in either the spatial, virtual and incremental sense. We obtain
the following equations, where the original statement is included for completeness:

N
Z W/;,J = 07
J=1
N
Z WIB;’J = 0)
! (10)

N
Z W/aﬁJ = 0;
J=1

N
Z w,00m, =0
J=1
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and

N
Z(’NIJ & Wye + Wity ) = 0,
J=

(8'7] ® WJ/® + W/S;IJ/(}@) = 07

M- 14-

(On, @ Wyye + Wi0n,,,) = 0,

~

N
> (@81, @ W)y + W087,) = 0.

J=1

Apart from the first equation—that gives the interpolated oriento-position, hence the relative helices #,
themselves—Eqs. (10) and (11) collect seven algebraic equations having as unknowns all the plain and
mixed variations up to the third-order of the relative helices. They are the virtual, incremental and mixed
virtual-incremental variations 8,, On,, 0d1,, the gradients #, ., and the virtual, incremental and mixed
virtual-incremental gradients 81, ., 01/, 001, 5. In order to state the problem in terms of local variation
variables, which are related to the relative variation variables by Eqgs. (8) and (9), we still need to link the
relative variation variables to the variations of the relative helices.

Given the exponential map of the rototranslation and its dual vector argument, the helix, the mapping of
the variations of the helix itself onto the differential helices that characterize the differentiations of a ro-
totranslation tensor is referred to as the associated differential mapping. For the present purposes, we are
interested in mixed differential maps up to the third level, hence we get involved with mixed differentiations
up to third-order of the rototranslation tensor, that is by no means an easy task. Resorting to an original
recursive representation of orthonormal tensors by means of an infinite family of nesting tensors was
decisive in yielding manageable expressions for the needed differential maps. The formulation is extensively
discussed in Merlini (2003) and is outlined in two Appendices. The spirit of the theory is developed in
Appendix A, which deals with the differential maps of the rotation and can be useful by itself to people
interested in interpolating just the orientation tensors. The main results for the differential maps of the
rototranslation are recovered in Appendix B, where meaningful explicit expressions are also discussed.

Application of Egs. (B.14) and (B.15) to the present case yields the following direct relations between the
relative variation variables and the variations of the relative helices,

'7&/ = /]J 6ﬁj
’NTaJ = /]Jafh (12)
floas = 4,080, + Ayt : S, @ O,
and
;= /11;11/@
ey = Asdily e + Ay 1 30, @y
Way = /~1Ja'~1j/>§ + ;1111213 2 0ny; @1y
sy = 4,080, + Avyy (880, @ iy, + Ol @ iy + iy @ Oy )

1234 1 -~ - o\ V1234 L
+ (Aw} - (§ (FA)" P A + 4, @ A}A,) 0, @0, @1,
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and the inverse relations, that represent the solution of Egs. (12) and (13) for the variations of the relative

. . . L . ~ ~1234 .
helices. Expressions for the mapping tensors, in either the direct form, A4,, A;ﬁéj, A5, and the inverse

~ 112 ~—1234

form, /~1jl, Ay 5, A5, are given in Appendix B, see Egs. (B.16) and (B.17). Refer to Appendix A for an
explanation of the notation used to denote particular symmetries of higher-order tensors.

4.4. Interpolation formulae

Within Egs. (10) and (11), we now substitute the inverse of Eqgs. (12) and (13) for the variations of the
relative helices; then, we substitute the inverse of Egs. (8) and (9) for the relative variation variables. Seven
algebraic equations are obtained with the local variation variables as unknowns. They are solved in cascade

(refer to Merlini and Morandini (2003) for any details) and yield the virtual, incremental and mixed virtual-
incremental oriento-position dual vectors

N N N
aGSZZVJ'aG&/+ZZ/VJK:a?SJ@aaKa

the finite curvature
N .
k=-Ay"Y Wi, 08 (15)
J=1
and the virtual, incremental and mixed virtual-incremental curvatures
N
ks :ZWJ tasy 1,

J=1

N
ka:ZWK:aaK@)I, (16)
K=1

N N N
ka5:le:WJZaa5J®I+le: 2 IWJK : ag_]@lla[(@l.

The curvature k is obtained in closed form. The other local variation variables are obtainable by
interpolation formulae linear with the nodal variation variables, i.e. the virtual, incremental and mixed
virtual-incremental nodal oriento-position dual vectors as;, aa;, @gs;. The coefficient dual tensors of the
second, third and fourth-order in Egs. (14) and (16) are given in closed form as
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V,= Ay (WA H),
——1 -123 Ti132 T132 ¢y \T132 T132 ; T132 T132
Vo =4y (An~V) Vi — (WJAJ/ H;) Vi — ((WKAK/ Hy) V)
123 T132 f;
+ 3 (W Ay Hy) " Hy)

=7
Wy = Ay (~(diy = A ) Vs (WA = WA k) Hy) @ ¢
Wk = Ay~ (AnB2V, — WA, "2 H ) ™2 4 (A2 Vi — WA "2 H )20 ,) ™ (17)
_ (Aﬁ/,» — AHI 2k, DY gk + ((AI’HI/ZIQ i A :::ki) V)R,
((WJIAJ/T 2 w47+ 4 —f:)ki)ﬁj)nsz V.
— (W™ + (A 2 + AQlKgéé)k,»)H,()T'” V)T
S (WA 2 4wy (A2 4 Aélj%%é)ki)gj)ng]() og
- Wzgm-

In the expressions of Eqs. (15) and (17), we exploit for convenience of notation some dual tensors built
with the differential maps of the relative rototranslations. They are the summations

N N
Ay = Z W/Aj_lv AI_I/ = Z WJ,iAJ_l ®g,
—123 123 —123 —123
A Z WAy Ay Z Wyidys ® ¢, (18)

N
~1234 ~ 1234
Ag === WAy
J=1

the fourth-order dual tensors

A = (A T+ 345 (@ T+ (T D)),

AP = (A2 +14," (T o1+ (o )™)S 2, (19)
~—1234 71234 123 7 123

234 " 123 - S1234
Agy= = AIV (3A111J AJAIIIJ - IA ' AJAIIIJ +A11 ® I)” ==

and the inverse form A]/ of the derivatives of the tangent map from Egs. (B.19),,

- 1 - -

Ay = Aty +5(F4) "4, N
- 123 1o 5., ( )

A/_AIIIJ _EAJ r,

which are tied by the reciprocity relations
/*1;/ _ /]J—l((AJ/AJ—I)TBZ/];I)TISZ’
;1]/ _ ;1]((;1;/;1‘,)“32;1])“32.

It is noted that the derivative-related tensors in Egs. (15), (17) and (18), come in the form of dyadic
compositions with the contravariant base vectors g'. The covariant component tensors are actually first
computed using the known derivatives #;; with respect to the domain coordinates &'. In order to recover
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the curvature tensor and the coefficient tensors for the differential curvatures, we need to know the base
vectors, which in turn rely on the dual part of the curvature. The covariant base vectors will be computed
from the curvature component vectors as g; = dual(X'k;), see Part 1. This enables building the Jacobian
tensor G = g; ® i/, with # the unit vectors of the absolute orthonormal base, and extracting the contra-
variant base vectors as the component vectors of the inverse-transpose tensor G~' = g/ ® i.

5. Computational aspects
5.1. Computation of the weighted average orientation

The interpolation problem giving the weighted average orientation can be solved numerically by a sort of
Newton—-Raphson procedure on the vectorial equation
N
Z W axlog(aa)) = 0, (21)

J=1

obtained extracting the axial vector of Eq. (2). In terms of relative rotations @, = ao; and relative rotation
vectors ¢, = axlog®,, Eq. (21) can be stated as f(¢,) = 0, and in incremental form f + 9f = 0. Let us now
introduce the incremental orientation vector y, such that y,x = daa™ = 0@, @} = ¢, x, and exploit the
differential maps of the relative rotations, ¢, = I';0p, (see Appendix A); it follows that y, = I',0¢,.
Therefore, the vector function f and its increment Of can be written

f = Z VV/(p.h
/= (22)

N
of =Y W'y,
J=1

An iterative solution process can be started having vector f from Eq. (22); as residual and using tensor
S w,I';' from Eq. (22), as Jacobian. At each iteration, a linear 3 x 3 equation set is solved for the incre-
mental orientation vector y,, which is used to multiplicatively update the unknown orientation tensor,
o — exp(yyx)a.

A good starting point for this procedure is recommended, and an efficient way to achieve it is proposed
here. Starting from the orientation &, with the highest associated weight, we iterate on the fictitious problem
f + Iy, = 0. This roughly means to regard > W,;¢, as a small rotation vector to bring to zero like an error.
This approaching procedure just requires the evaluation of the residual Eq. (22), and can cheaply lower the
error under 10~ rad. From such a good starting point, a quadratic rate of convergence of the next pro-
cedure of the Newton—-Raphson kind is practically ensured.

5.2. Computation of the weighted average oriento-position

The problem of the weighted average oriento-position, Eq. (4), could be solved numerically by the same
procedure discussed above, exploiting the rules of dual algebra. However, the linear dependency of the
oriento-position tensor on the position vector suggests a computationally more efficient procedure made of
two steps. Extracting the axial vector of Eq. (4) and introducing the relative rototranslations H, = AA}
and the relative helices 5, = axlogH;, and exploiting Eqgs. (16), (18) and (21), from Part I, we arrive at the
explicit form
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N
> W@, + el (x - byx))) = 0. (23)
J=1
The primal part is just Eq. (21) and is first solved for the weighted average orientation «. Then, the dual part
reduces to a linear problem with position vector x as unknown. The interpolated oriento-position dual
tensor is finally recovered as 4 = (I + gxx)a.

5.3. Numerical validation of the interpolation formulae

The quite huge expressions of the coefficient dual tensors in Egs. (17) have been tested numerically. Let
us consider two distinct configurations, a given configuration and another, very close, perturbed configu-
ration, and let us refer to the change of configuration as the updating process. Assigned values of the nodal
oriento-positions define the given configuration, and an assigned set of the nodal variation variables define
the updating of the nodal oriento-positions to the perturbed configuration. In both configurations, the
numerical solution of Egs. (4) and (15) yield the interpolated oriento-positions and curvatures, that we
assume as ‘exact’. In the given configuration, using Egs. (14) and (16) with the assigned nodal variation
variables, a set of local variation variables defining the local updating to the perturbed configuration is
obtained. This local updating yields predicted oriento-positions and curvatures, which must converge to the
exact values as the perturbation magnitude diminishes.

In order to test the interpolation formulae, which account for two independent variations, we need a
consistent updating mechanism for oriento-positions and curvatures, which shall involve the variation
variables characterizing two independent variations, say 0 and 6. Consider a double variation that brings an
oriento-position 4 in A'=A4+ 34+ 0(A+034) = A+ 0A+ (A +0A4) = A+ 54 + 0A + 03A4. By apply-
ings Egs. (5), it follows that A" = (I + asx + apx + agsx + % (apxasx + asxapx))A, and since the differential
vectors as, ay and ags are infinitesimal, we can assume A" 2 (I + asx + asx + ag;x)A. Now, an infinitesimal
rototranslation must transform A4 in A’, and this condition is satisfied by substituting exp((as + @ + @os)x)
for the transforming tensor. Similar but more involved considerations (see Merlini and Morandini, 2003)
yield the transformation rule for the curvature tensor from k to k'. Thus, the updating formulae for oriento-
positions and curvatures are finally proposed in the form

A" = exp(agx)A
/ p( : ) ) o S (24)
k' = dexp (aasx)kos + (I + dexp(aasx) (@osx + (a5 ® ap)” + ap - as @ I))k,

where
Q5 = a5 + ap + acs,
i‘aa = ks + ko + kos.

In the validation tests, Eq. (24); is also used for updating the nodal oriento-positions.

Tests are performed on four different orders of domains, described respectively by 1, 2, 3 and 4 coor-
dinates. By using multilinear weight functions, this means elements with 2, 4, 8 and 16 nodes. The nodal
oriento-positions are generated by random rototranslations of real part magnitude up to more than 2 rad,
and are given random perturbations confined within a band of randomly generated width. The compu-
tations are repeated 100 times, providing a total amount of 400 different tests at disposal. The interpolation
weights and their derivatives are computed each time at random internal placements.

The errors of the predicted oriento-position and curvature with respect to the exact values are measured
respectively as the real part magnitude of the relative helix, and the maximum absolute difference between
the scalar components of the curvatures. A quadratic rate of convergence of the interpolation formulae
with decreasing the magnitude of the nodal perturbation is observed (Fig. 3), and this is a reliable evidence
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Fig. 3. Convergence of the linearization formulae of the interpolation.

of the soundness of the linearization. However, in comparison with the fairly cheap procedure yielding the
interpolated oriento-position, the linearization is computationally rather expensive. The whole process is
consuming a mean time of 4, 10, 34 and 141 ms per test to interpolate among 2, 4, 8 and 16 nodes
respectively, on a Pentium III computer at 933 MHz.

6. Example

In this section, we discuss the description of a solid hexahedron from the position and orientation of
eight corner frames. The example is taken from a finite-element simulation to be discussed in Part III, and
represents the deformed configuration of an element that was initially prismatic, of size 2x 1 x 1 and aligned
along the absolute axis x'. The absolute reference frame, the deformed configuration, and a further con-
figuration after a rigid motion, are depicted in Fig. 4 (the initial configuration is not relevant in this
example). The corner data are listed in Table 1.

The model field is defined on a rectangular domain described by three material coordinate lines
& = [~1,+1], with &' parallel to edge 1-2, & parallel to edge 2-3 and & parallel to edge 1-5. Standard
three-linear weight functions W, = %(1 + ¢! é})(l + ﬁzfi)(l + 53@) are used for the interpolation. Since the
element edges lie on coordinate lines and the element faces lie on coordinate surfaces, the interpolation on
the boundary using such weight functions is local to the boundary itself. This ensures C° continuity of the
oriento-position field across adjacent elements. The helicoidal interpolation is exploited in this example to
render the geometry of the element: each face and each edge are modeled with a number of facets and
segments, and this mesh is interpolated from the corner nodes. So, faces and edges are curved surfaces and
lines, respectively.

The oriento-position 4 of an internal frame located at ¢ = (0.2,0.0, —0.3) is interpolated from the eight
corner frames, and the dual component vectors k; of the curvature along the coordinate lines are computed
from Eq. (15). The position x, the orientation tensor «, the base vectors g, = dual (X' k;) and the angular
curvatures k,; = primal (XTki) are recovered and listed in Table 2. The interpolated frame and an ‘ele-
mentary’ volume of initial size 0.4x0.4x0.4 are plotted in Fig. 4. It is easy to envisage the difference be-
tween this interpolation based on the helicoidal modeling and common interpolations based on classical
uncoupled modeling. Even if the orientation would have been interpolated multiplicatively according to Eq.
(2), the corner-node element built with standard isoparametric functions would have exhibited straight
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Fig. 4. Helicoidal interpolation of a deformed hexahedron.

Table 1

Positions and orientations of corner frames

X

a

a

a3

1 3.22989991
4.39071471
0.17134187

2 2.32012122
3.99131867
0.29246236

3 2.59481673
3.88768434
1.32324204

4 3.44536342
4.29237833
1.07487356

5 1.71236201
5.96865365
0.50092547

6 1.24918588
5.08759160
0.68019308

7 1.52285903
5.24897003
1.69955113

8 1.93261569
6.07401308
1.40529471

—0.381852659
0.906706495
0.179086233

—0.391731346
0.895364344
0.211823618

—-0.352321916
0.914252067
0.200031063

—-0.372619388
0.909984998
0.181884839

—-0.875276697
0.464544629
0.134495324

—-0.869169880
0.450635907
0.203644296

—-0.837379182
0.518383601
0.173420149

—0.859252855
0.494095535
0.132492011

—-0.907936713
—0.404230328
0.110674145

—-0.897655212
—0.422436080
0.125550303

—0.873185522
—0.398036382
0.281272257

—0.882783513
—0.408019712
0.232837247

—0.444489976
—0.882307493
0.154797119

—0.420473610
—0.890210064
0.175293999

—0.448146618
—-0.832712741
0.325198555

—0.446798858
—0.851004650
0.275974395

0.172741053
-0.120337749
0.977588541

0.201895204
—0.140962585
0.969209924

0.336773383
-0.075565848
0.938548609

0.286091002
—-0.073805264
0.955355809

0.190576402
0.075708488
0.978748619

0.260279972
0.066733211
0.963224281

0.312986766
0.194596847
0.929608171

0.249109034
0.177934507
0.951989496
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Table 2

5399

Position, orientation, base vectors and angular curvatures at £ = (0.2,0.0, —0.3) from the helicoidal interpolation, and orientation and
angular curvatures from the additive interpolation (marked with an overbar)

X o %) a3 o %3 o3
2.46921 —-0.57550633 —0.77053058  0.27399833 —0.57423280 -0.77182423  0.27302757
4.67371 0.79706182  —0.60346359 —0.02289440  0.79899357 —0.60104978 —0.01866651
0.86690 0.18298885  0.20521774  0.96145762  0.17851043  0.20742835  0.96182509
81 8> &3 kul kaZ ka} zall zaZ EuS
—0.38285 0.13329 —0.55683 0.00388594 —0.04595530 —0.02656145  0.00402349 —0.04615493 —0.02974501
—-0.29906 -0.01282 0.77240 0.02604382  0.05505335  0.00758286  0.02622432  0.05413409  0.00781498
0.09943 0.48938 0.18416 —5.47895E-6 —0.00695709  0.33785617 —0.00023360 —0.00734615  0.33720886
Table 3
Relative rotation error and angular strain in the rigid motion by using the additive interpolation
@ @, (%) @y3
—3.6849E-04 1.2349E-04 6.1001E-04 —6.7284E-04
-9.5707E-03 —2.9616E-04 —4.1573E-04 8.8087E-03
1.4695E-02 2.6097E-06 1.4312E-03 —7.6800E-03

edges, and the position and the shape assumed by the elementary volume would have been quite different. It
can be guessed that model fields based on the helicoidal interpolation constitute a sound basis to build finite
elements that do not suffer from shear-locking.

The interpolated orientation and angular curvatures are also compared in Table 2 with the outcome
from the additive interpolation, Eq. (3). The orientation is computed as & = exp(yx) on the weighted
average rotation vector y = Y W;y, among those defining the nodal orientations, and the angular curva-
tures are computed as k,; = dexp (yx) -y, = dexp (¥x) - > W;.p,.

In Fig. 4, the same hexahedron is shown after a rigid rototranslation H = (I + £¢x)®, with translation
vector t = 5i' 4 2i* — 5i° and rotation vector ¢ = NG (i1 — 47 — 0.51'3). By computing new oriento-position
and curvatures from the rototranslated corner frames, the helicoidal interpolation gives exactly the pre-
ceding values rototranslated, namely A" = HA and k, = Hk;. This ensures that no strains o; = k, — Hk;
arise from rigid motion, and is a numerical test for objectivity (the path independence of this interpolation
example is inherent in that no history is considered). Instead, the additive interpolation gives new orien-
tations and angular curvatures different from the preceding ones rotated by @, i.e. & # ®a and k., # Pk,
The error is measured by the rotation vector @ of the relative rotation & (®a)", and the angular strains
@, = k!, — ®k,;, see Table 3.

7. Conclusion

The proposed helicoidal interpolation of the oriento-position field is based on the relative rototransla-
tions from the nodal oriento-positions. This fact ensures the consistency of the model issued by the
interpolation with the underlying actual field, in the sense that the former complies with the algebraic rules
of the special orthogonal manifold of rototranslations to which oriento-positions pertain. The consistency
of the model leads to a genuine differentiation, which is a valuable asset in finite-element approximations of
variational principles in solid mechanics. Achieving this consistency on multi-coordinate domains is a
prerogative of the proposed interpolation.
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The interpolation scheme is endowed with other merits. It is by nature invariant against rigid motion and
frame indifferent, and at the same time path-independent. It is general as for the number of coordinates of
the domain. Moreover, it is general in the sense that no definition of the weight functions has been yet
attempted, so it may be applied in principle to domains of whatever shape. The implicit interpolation
scheme is numerically solved by an efficient procedure, and is equipped with the parameterization-free core
of a threefold consistent linearization. It is based on the helicoidal modeling of the continuum (see Part I),
and constitutes the natural interpolation of the kinematical field allowing to build curved and curving finite
elements based on nodal frames, capable of displacements and rotations unrestricted in size (see Part III).
The proposed interpolation is guessed to play an important role in the modeling of shells in the near future.

The formulation greatly relies on the powerful formalism of dual numbers, which only makes the ro-
totranslation differential maps available in an affordable way (Appendix B). So, the interpolation of the
oriento-position is actually an extension of the interpolation of the orientation, which is also supplied in
this paper and can be useful in the context of classical modeling.

A possible drawback we can pick out in this interpolation scheme is the huge expression of the coefficient
tensors of the interpolation formulae. A careful investigation for obtaining simplified formulae, able to
increase the computational efficiency with a minimal loss of accuracy, would be an appreciated effort.

Appendix A. The differential maps of rotation

It was shown in Part I that subsequent differentiations of the rotation are characterized each one by a
new characteristic differential rotation vector. The differential vectors @z, @z, @g4q5, characterizing the
differentiations up to third-order of a rotation tensor @, have been identified as the axial vectors of tensors
SPPT, 05PP" and dOSPP", respectively. The aim of this Appendix is to relate such characteristic dif-
ferential rotation vectors to the variations of the rotation vector ¢, namely to establish the associated
differential maps up to third-order of the exponential map of the rotation.

In spite of the rather concise results presented, the task was very complex so that the underlying work
deserved a dedicated Report. Any details and related extensions can be found in Merlini (2003).

A.1. Nesting tensors

Consider an infinite family of tensor functions, defined by the following series expansions,

= m!
D, = exp,(px) = ———x" (Vm =0). Al
Po(9x) ;(nm)!fp ( ) (A1)
Owing to the evident similarity with the exponential expansion, we borrow for such functions the symbolic
name exp,,. In particular, the first member of the family (the element zero) is just the rotation tensor,
@, = @ =exp(px). It is a matter of elementary algebra to recognize that Eq. (A.1) can be written as

S om! ; m! ;
qsm:; TR +(l+m)!(px @, (Ym=0,VI>0). (A2)
The meaning of Eq. (A.2) is clear: truncating the series expansion @,, at the /th term is exact, provided that
the last retained term be multiplied by a higher element of the same family, namely @,,,. Notice that, at
increasing the integer m, the elements of the family approach to the unit tensor, and at the limit @, = 1.

This family of tensors establishes a new representation of the rotation tensor, which is recursive in the
sense that the same truncation mechanism is valid for the rotation tensor itself and for each subsequent
element of the family: every element can in turn be truncated at whatever term / > 0. In particular, consider
truncating the series at the first term (/ = 1, the strongest truncation),
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1
D, =1+——px®,,,. A3
+ ml PXP 11 (A.3)
Eq. (A.3) enables us to envisage a recursive representation of the rotation tensor @, exploiting all the
elements of the infinite family. This family can be seen as a nest of tensors, so their members will be called
the nesting tensors of the rotation.

The series expansion in Eq. (A.1) can be brought to a closed form based on two minimal tensorial bases,
ox and @x*:

@ = I + apx + bypx’,
D, =1+ bypx + b](px27 (A4)
D, =1+ mb, 1px+b,px* (Vm>=1).

Eqgs. (A.4) are referred to as the short forms of the nesting tensors, and are of much interest for compu-

tational purposes. They are drawn using the recurrence formula @x* + ¢*@x = 0, with ¢ the rotation angle,
and exploit a recursive series of coefficient functions,

00 "
a=73 (;4_)1)5 @ = i sin ¢,
n=0 o )
by =013 o™ =L (1 —cos ),

1o

o) 71 n n
bl = llzo(érﬂr)fa)'(pz = (1 7(1)’

by =m0 (Im=0) =L(1—m(m—1)b,2) (¥m=>2).
n=0

<

<

The coefficient functions in Egs. (A.5) can be computed by truncated series expansions from the left
column at small angles, and by the analytical formulae from the right column at angles far enough off the
singularity point. Unfortunately, the numerical ill-conditioning of the recursive analytical formulae is
growing with the coefficient index; so, the threshold angles for switching from the series to the analytical
expressions become quite large for high coefficients. This in turn demands a higher truncation term of the
series expansion in order to preserve accuracy. For the lowest twelve coefficient functions, a fairly good
accuracy of 1.E-15 in double precision floating point was achieved on a Pentium processor by keeping to
the parameters from Table 4. The accuracy was checked against ‘exact’ values computed in an arbitrary
precision software environment (Ring, 2003).

The nesting tensors are endowed with several remarkable properties. For instance, they share the
eigenvector ¢@; they commute with ¢x, @,,¢x = ex®,,; they commute with each other, @, ®, = ®,P,; a
useful relation between two subsequent nesting tensors follows from Eq. (A.3), written as @x®, =
m(®,,_, —I), in the forms

1
(m+1)(m+2)
(gpm - ¢1n+1)¢x =1 +m¢m—l - (m + I)QM (Vm = 1)7

¢m - ¢m+l = ((m + 2)¢m+1 - (m + 1)¢m+2)(px (Vm = 0)7

the transpose nesting tensors are made of the opposite rotation, @1 = exp, (—@x); the transpose and in-
verse forms are tied by the relations

@D, =1 (detd,)®, (0, —I) &,'=1—(detd,) '@ (@, — 1),

&' =1 (detd,)(®," - 1P, & " =1—(detd,) (P —I)®,,.

m

Other properties useful for the derivations to follow can be found in Merlini (2003).
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Table 4
Recursive coefficient functions. Threshold angles for switching from series to analytical expressions and truncation term in the series
expansion

Coeflicient function Threshold angle (rad) Truncation term
a 1.LE-8 0
by 0.015 2
by 0.5 5
by 1.2 7
b3 14 7
by 2.1 8
bs 2.3 8
bg 2.6 8
b, 2.7 8
bg 3.6 9
by 4.0 9
bo 4.2 9

A.2. Derivatives of the nesting tensors

By taking a single variation § and a double variation 03 of the nesting tensors,

0D, =d,, :dp 1,
] (A.6)
08P, =, : eI+ D, 09 289 @1,
the relevant first and second derivatives with respect to the rotation vector become identified as the third-
order and fourth-order tensors ®,,) and 45,15/%4, respectively. The latter is of course endowed with symmetry
of the inner component vectors, since differentiations commute. This symmetry is marked by the notation
( )1254, where the positions 2 and 3 of the component vectors are underlined. From Egs. (A.6), the dif-
ferentiation formula of the first derivative tensor is immediate,

30, =@ Sp@ 1. (A.7)

On differentiation of functions exp,, from Eq. (A.1) by the formula

Sexp, (@x) =)

n=0 [=

o]

m!
— X" ! A8
0(n+l+l+m)! X OPXPx, (A-8)

the evaluation of Eqs. (A.6) yields concise expressions for the first and second derivative tensors of the
nesting tensors:

1
2(m+1)
i1

— IXIX(¢m+1 - ¢m+2) — (@erl _ ¢)n+2)IXIX)S12§4.

¢m/ - - (Ix(zgpm-%—l - I) + (2¢m+1 - I)IX + ¢XIX(¢M+] - @m+2) + (¢m+l - ¢m+2)1X‘PX)7

L (2lx¢m+l/ + 2¢m+l/lX + (PXIX(¢m+1/ - ¢m+2/) + (¢m+|/ - ¢m+2/)lx(px

(A.9)

It is worth noting that the derivative tensors are recursively built with the lower-order derivatives of the two
next nesting tensors. In Eqs. (A.9), I" = gx® g’ is the third-order Ricci’s tensor. The notation ( )51g§4
stands for the symmetric part of a fourth-order tensor with respect to the inner component vectors.
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A.3. Rotation differential maps up to third-order

The differential rotation vectors @g, @ys, @445, characterizing the differentiations up to third-order of the
rotation tensor @, have been defined (Merlini, 2002) as the axial vectors of the following tensors, respec-
tively,

3D D" = yx,

1
BPD" = @ x + 3 (@X@sx + Psx@;X), (A.10)

1
dOdP D" = @ypex + 3 (@4oXPsX + PosXPyX + P5aXPoX + PgXPosX + P XP3gX + P5XPoX).

From Egs. (A.10), by exploiting the recursive representation by means of nesting tensors, and the relevant
differentiation formulae Egs. (A.6), the differential rotation vectors can be brought to the following forms,

¢s = I'd9,
o5 = F00¢ + i : 9p @ 3,
Puos = Td0Sp + ' : (de ® 08¢ + g ® 5dg + S © dde) (A.11)
1234 1, Ti32 123 T SI234\
+ Iy~ — E(IF) py+rer'r : do ® 0p ® b0,
that can be inverted for
S =T''o;,
i —12
03¢ =TI 'y — rm_g 1Py D @,
dode =T '¢q; — F;ngé (P4 @ @5 + 9o R Q54 + P5 D Qo) (A.12)

S1234
—1234 —123 —123 1 “1yx —123 _ === .
- (FIV_ - <3FIII_FFIH_ - EF 'PFrr,=+r'e I) ) D04 Q9D @5

Eqgs. (A.11) constitute the associated differential maps, up to third-order, of the exponential map of the
rotation. The mapping 8¢ — ¢; stated by Eq. (A.11); is well known in the literature on finite rotations and
represents the tangent map (or first differential map) of rotation (e.g. Cardona and Geradin, 1988; Ibra-
himbegovi¢ et al., 1995; Borri and Bottasso, 1998; Borri et al., 2000; Ritto-Corréa and Camotim, 2002;
Bauchau and Trainelli, 2003). As for the notation, forms like ( )™ and ( )"’ specify the transpose of a
third-order or a fourth-order tensor, respectively, by indicating the ordering of the component vectors in
the dyadic representation; for instance, ( )T132 transposes the two component vectors on the right, and
( )m ** transposes the two component vectors in the middle. The symmetric part of a tensor is denoted by
( )3 or (>, where the positions of the two symmetric component vectors are underlined; in particular,
a double underlining as in ( )Sl%gi stands for the full-symmetric part of a fourth-order tensor with respect
to the three component vectors on the right, which is defined as ( )¥2f=1(()+( )™+

()™ O™ ()™ 4 ()™). Finally, ()'22 denotes a third-order symmetric tensor with respect
to the two component vectors on the right, and ( )lggé denotes a fourth-order full-symmetric tensor with
respect to the three component vectors on the right.

The direct forms of the mapping tensors in Egs. (A.11) are strictly related to the first nesting tensor and

to the relevant first and second derivative tensors,
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r= (D17
123 S123

o (A.13)
1234 123451234

IFy==®,, ==

- ~1234
Tensors ™', T mlg;, I'y,==" in Egs. (A.12) represent the inverse forms of the mapping tensors. The direct and

inverse forms are tied by the reciprocity relations

—123 1123 13 T132 g
ry==r 1(FHTF 1) r 17

Tiip = Iy ™0™,

A.14)
—1234 1234 (
= = ! ((I‘I\:,:IFI)TMBIPI)TMZ}F*I,

1234 —1234 | T1423 ;~\ T1423

v =T((Iy=T) r) r.

A.4. Derivatives of the rotation exponential and tangent maps

For the sake of completeness and for future reference, we give the expressions of the derivatives of the
exponential and tangent maps of the rotation, namely tensors @ = @, and I' = @,. According to the
differentiation formulae

b =0, :3pI,

r=r;:3p®lI, (A.15)
the derivative tensors become identified by the third-order tensors
P, = b, = (¢I><FT)T132’
r=d,=r;+ % (rr)"r. (A1)
The variations of such derivative tensors,
1234
8d5/fcblé/34 10 ® 1, (A17)

ory=Tr;:8¢®]I,

identify the second derivative tensors ¢}%§4 = 45(1)%/54 and I ;%34 = 45:%/34, cf. Eq. (A.7).

Appendix B. The differential maps of rototranslation

Establishing the associated differential maps of the exponential map of the rototranslation is a plain
extension of the formulation drawn in Appendix A, owing to the properties of the algebra of dual numbers
applied to dual tensors. In this Appendix, we give the relations between the differential helices character-
izing differentiations up to third-order of a rototranslation tensor and the variations of the helix itself.
Meanwhile, we point out some noteworthy explicit expressions, as the dual parts of the quantities involved
are closely related with appropriate quantities of the case of rotation. In particular, it will be seen that they
always appear as one-order higher derivatives. It should be noted that an explicit formulation of the dif-
ferential maps of the rototranslation would have been very much harder. Details and extensions can be
found in Merlini (2003).
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B.1. Dual nesting tensors

The infinite family of dual nesting tensors of the rototranslation is defined the same way as for the case of
rotation by the series expansions
= m!

H, = exp,, (nx) = i)l X" (Vm = 0). (B.1)

Again, the element zero coincides with the rototranslation dual tensor, Hy = H = exp(nx), with 5 the helix.
The recursive truncation mechanism operated by tensors H,, is evident from the relation

-1
m! !

B ! . m! ;
Ho =3 gt ™ oy Hin (9> 0,91>.0), B2

n=!

which reduces to the strongest truncation for / =1,

Hm =1+ "XHm+1' (B3)

m+1

By using the helix explicit expression # = ¢ + €p in the series expansions of Eq. (B.1), the following
explicit formula is obtained,

0o 00 m
eXPm('IX) — expm (PX + EZ Z mtpx"pxq)x], (B4)

n=0 [=0

having a dual part linear with p and worth comparing with Eq. (A.8). Thus, by recalling Eq. (A.6);, the dual
nesting tensors are found to possess the explicit expression

H,=®,+e®,, :p1, (B.5)
built with the corresponding nesting tensors of the rotation and their first derivative tensors. The dual part
of Eq. (B.5) is linear with vector p and worth comparing with Eq. (A.6);.

The nesting tensors of rototranslation are endowed with all the properties of the nesting tensors of
rotation. In particular, the short forms based on two minimal dual-tensorial bases yx and x> are given,

H, = I + Angx + Boyx’,
Hl =1 -f-B(ﬂ]X—'—BlTIXz7 (B6)
H, = I+ mB,_qx + B,qx* (Vm = 1),

being used for numerical evaluations. They are obtained by the recurrence formula gx + n’gx = 0 (with 7
the helix dual magnitude) and exploit the recursive series of dual coefficient functions

= =D, 1
A —%m" “
O'Z(Z(n +)2) : :%(1 - cosi), (B.7)
Blllz((;)n)'ﬂzn :%(1714)7
—m! Zomnz" (Vm=0) = %(1 —m(m—1)B,») (Ym=2)

Such coefficients allow also the following recursive explicit expressions,



5406 T. Merlini, M. Morandini | International Journal of Solids and Structures 41 (2004) 5383-5409

A=a+ 8(b1 — b())(pp,

1 (B.8)
B, =by+e r(brn+2 —bui1)op  (Vm =0),

+1

the dual parts of which are once again linear with the helix dual part magnitude p. Although Eqgs. (B.8)
could be used to build the dual coefficient functions from Egs. (A.5), the direct computation from the series
and analytical expressions of Egs. (B.7) is preferred. However, Egs. (B.8) suggest that the threshold values
in Table 4 should be increased for the dual case; in practice, it is found that just the coefficients 4 and B are
affected. For such coefficients, we propose to raise the threshold values to 0.001 and 0.1 (and the truncation
terms to 2 and 4), respectively, being satisfied with an accuracy of 1.E-13 for the dual parts. For all the dual
coefficients, the helix primal part magnitude ¢ can be tested against the threshold real value.

B.2. Derivatives of the dual nesting tensors

The differentiation formulae

5H, =H,, :dq®1,
(B.9)

1234

0H, = H,, : 0dq® 1+ H, eI,

enable identifying the first and second derivatives of thelgllial nesting tensors with respect to the helix, as the
third-order and fourth-order dual tensors H,,, and Hm-/% , respectively. It also follows the differentiation

formula of the first derivative dual tensor,

8H, = H, 7' :n o1 (B.10)

The extension of Egs. (A.9) to the first and second derivative tensors of the dual nesting tensors is
straightforward, and yields

1
2(m+1)
1224: _ 1
m// 2(m+1)

X X x yx\S1234
- (Hm-H _Hm+2) - (Hm-H _Hm+2)l I) .

H, =—- (F'(2H 1 — 1) + 2H ) — DI +qxI*(H 1 — Hypi2) + (H 0 — Hyp2) Iyx),

H (2IXHm+1/ + 2F1m+1/1X + ']XIX(Hm+l/ - Hm+2/) + (Hm+1/ - Hm+2/)IX"X

(B.11)

For the first derivative of the dual nesting tensors, the explicit expression is easily drawn by recalling Egs.
(B.5), (A.6); and (A.7),

H, =@, +:07 :pal. (B.12)

It is built with the first and second derivative of the corresponding nesting tensors of the rotation. The dual
part of Eq. (B.12) is linear with vector p and worth comparing with Eq. (A.7).

B.3. Rototranslation differential maps up to third-order

From the definition of the differential helices #5, 155, 405, Characterizing the differentiations up to third-
order of a rototranslation tensor H (Merlini, 2002),
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SHH™ = X,
1
OSHHT = HosX + 5 (Maxmsx + NsxaaX), (B.13)

1
dOSHH" = ngq5x + 3 (MaoXMsX + NaaXMgX ~+ PsgXUoX 4 RgXW 55X 4 HoXWsqX + N5XN40X),

the associated differential maps of the exponential map of the rototranslation are obtained in either the
direct form

s = Adn,
Moy = A3 + Ay Oy © B,

123

Haos = AdOSy + A7 : (dn © 93y 4 o ® ddy + Sy @ don) (B.14)

1234 1o T2 123 AL
+ 457 - 2(IA) A +44°4 : dp® On ® on,

and the inverse form
3 =A""n;,
08y = Aoy — Ay o @ 1,
OB = A ey — Ay < (g @ Moy + Mo @ Mo + 115 © o) (B.15)

—1234 123 23 1 0 —123 1 szt :
— | Ay~ = | 34T Ay _EA KAy~ +47 @1 Sy QM D15

The mapping tensors in Egs. (B.14) come from the first dual nesting tensor and the relevant first and
second derivatives,

A= H17
123 s123

Ay =H| >, (B.16)
1234 123451234
v =My T

~1234
The inverse form A~!, A;>%, Ay, ==~ of the mapping tensors in Eqgs. (B.15) are tied with the direct forms by

the reciprocity relatlons
AH;ZQ — A (AIIIZISA )T132A717
A = A4y =4)"4,
(B.17)

—1234 1234

AIV::: — A*l((AI\—,——A >T1423A—1)T1423A—1’

A:\%éi _ A((A;Vl%;éA)TMBA)TMBA.



5408 T. Merlini, M. Morandini | International Journal of Solids and Structures 41 (2004) 5383-5409

B.4. Derivatives of the rototranslation exponential and tangent maps

The derivatives of the exponential and tangent maps of the rototranslation, namely tensors H = H and
A = H,, are also given. From the differentiation formulae

SH=H,:dn®1,

(B.18)
dM=4,:qx1,
they become identified as the third-order dual tensors
H/ = HO/ _ (HIXAT)T132’
1 (B.19)
A =H, = A’ +§(IXA)T132A.
We also give the explicit forms for such derivative dual tensors,
H =@, +e07 pal=dy +edy pal,
1234 1234 (B.20)

A/:F/+8F/7_ p®15¢1/—|—8¢1// p®l,

where @, and I'; are given by Eqs. (A.16). Again, the dual parts of Egs. (B.20) are linear with vector p and
should be compared with Egs. (A.17).

B.5. The translation vector

We close Appendix B with a noteworthy characterization of the translation vector in terms of the single
primal and dual parts of the helix. We know from Egs. (A.10); and (A.15), that 6@ = @sx® = @, : dp @ I.
Moreover, we know the form of a rototranslation tensor by means of the rotation tensor @ and the
translation vector ¢ (see Part I), so that, by recalling Egs. (B.5) and (A.16);, we can write
H=® +stx® =D+ P, : p® 1. By comparing the dual part of the rototranslation H with 6®, and
recalling Eq. (A.11);, we arrive at the relation

t="Tp. (B.21)

So, the translation vector is depending linearly on the dual part of the helix, and nonlinearly on the primal
part. Eq. (B.21) maps the linear part of the helix onto the translation vector. It is worth noting that this map
exploits the same mapping tensor as the tangent map of the rotation.
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